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1 An Introduction to Computers 
and Coding in Python 

Section 1.2 
 
2. D.  RAM stands for Random Access Memory; its bytes can be addressed in random order. 
 

3. 
30

20

120 2
240

512 2





 

 
5. There are 95 printable ASCII characters, so the 256 possible arrangements of the bits in one byte are 

sufficient.  , so 7 bits suffices. 72 128
 
6. This segment of code computes the sum of all the numbers from 1 to 6.  AX contains 0007, since it 

increases by 1 until it is greater than 6.  BX contains the sum, 0015.  This number represents 21 in 
the hexadecimal number system; 15 hex is 1 16 5 21   . 

 

Section 1.3 
 
1. Redundancy is less than optimal representation or transmission of information, which makes it 

possible to interpret a message and correct errors even when the message is garbled. 
 
5. The + operator, when applied to two strings, concatenates them, that is, combines them into one 

string. 
 
7. 9-8*2+6 gives -1, because multiplication is applied before addition and subtraction. 

(5-1)*(1+2)**3 gives 108 because expressions in parentheses are evaluated first, and power is 
applied before multiplication.  Thus (5-1)*(1+2)**3 = 34 3 .  The precedence of operators is 
parentheses, then **, then * and / from left to right, then + and - from left to right. 

 
8. m%n returns the remainder when m is divided by n.  % is applied before + and -; it has the same rank 

as * and /. 

Section 1.4 
 
3. C 
 
6. A 
 

5 
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2 Variables and Arithmetic 
Section 2.2 

 
3. (a), (c), (e) 
 
4. def, for, in, return 
 
6.  

One is better than  
one; two is better than one 

 
\n in the string is an escape character that means newline. 

 
9. The line return n**3 needs to be moved one space to the left for consistent indentation. 
 

Section 2.3 
 
1.  

>>> r = 5 
>>> pi = 3.14159 
>>> area = pi * r**2  # or: area = pi * r * r 

 
3. name, d7, first_name, lastName, Amt, and LBS_IN_KG are valid names for variables.  name, d7, 

first_name and LBS_IN_KG are common Python style.  lastName style, often called “lower 
camel case,” is more commonly used in Java than in Python; Python’s style with underscores is 
called “snake_case.”   Amt is not a good style for a variable, because it starts with a capital letter.  
But all caps in LBS_IN_KG is fine because it is a universal constant. 

 
6.  

5 
3 

 
Notice that a = a+b sets a to 5. 

 
7.  

def greeting(): 
    """Ask the user for their name and print a "Welcome to Python" greeting. 
    """ 
    name = input('What is your name? ') 
    print('Hello, ' + name + '. Welcome to Python!') 

 

Section 2.4 
 
2.  

(x - 2)**3 + 3*x 
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5.  
y = x*x 
y = y*y 

 
7. (b) The function returns None.  To verify this, write 

 
print(triangle('*')) 

 

3 Sets and Functions 

Section 3.2 
 
1. 4 subsets:  , {a}, {b}, {a, b} 
 

3. ; :{1, 2, 3, 4, 5} {11,12,13,14,15}f  ( ) 10f x x  . 
 
6. .  In other words, f(n) is the 

remainder when n is divided by 3, as in n%3 in Python. 

...; ( 3) 0; ( 2) 1; ( 1) 2; (0) 0; (1) 1; (2) 2; (3) 0;...f f f f f f f         

 
7. 27: 

 
x 1 2 3  x 1 2 3  x 1 2 3 

f(x) a a a  f(x) a a b  f(x) a a c 
 

x 1 2 3  x 1 2 3  x 1 2 3 
f(x) a b a  f(x) a b b  f(x) a b c 

 
x 1 2 3  x 1 2 3  x 1 2 3 

f(x) a c a  f(x) a b b  f(x) a b c 
 

x 1 2 3  x 1 2 3    
f(x) b a a  f(x) b a b And so on... 

 
9. ( )f P   distance from the center of the circle to P. 
 
11.  

9 5 

 
A set cannot include duplicate values; a list can. 

 
13.  

def mex(s): 
   """Calculate the mex (minimum excludant) of the set s 
      of non-negative integers. 
   """ 
    n = 0 
    while n in s: 
        n += 1 
    return n 
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Section 3.3 
 
1. Domain:  2 ; range:  0 . 
 
3. Domain: 1 1x   ; range: 0 1y   
 
4. The domain has 900 elements; the range has 27 elements (1 through 27). 
 
7. Two: , ,A B B C C A    and , ,A C C B B A    
 
9.  (1) (0) 1f g f  ;  (1) ( 1) 2g f g     
 

Section 3.4 
 
1.  

def concat_strings(s1, s2): 
    return s1 + ' ' + s2 

 
3.  

def right_justify(s, w): 
    """Return s padded with spaces on the left.""" 
    return (w - len(s))*' ' + s 

 
>>> right_justify('123', 5) 
'  123' 
>>> right_justify(5, '123') 
TypeError: object of type 'int' has no len() 
>>> right_justify('123') 
TypeError: right_justify() missing 1 required positional argument: 'w' 
>>> right_justify('12345', 3) 
'12345' 

 
5.  

** 
* 
### 
## 
# 
2 

 
8.  

len(0) Exception 
len('0') Returns 1 
len('''0''') Returns 1 
len('''''') Returns 0 
len([0]) Returns 1 
len([]) Returns 0 
len((0, 1)) Returns 2 
len(range(0, 1)) Returns 1 
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Section 3.5 
 
2.  

>>> a 
1 
>>> b 
2 

 
swap(x, y) swaps copies of the arguments passed to it; the original arguments remain unchanged. 

 
3. (a)  

from math import sqrt 
 
def solve_quadratic(a, b, c): 
    """Return the roots of the equation ax^2+bx+c=0.""" 
    d = sqrt(b*b - 4*a*c) 
    return (-b - d)/(2*a), (-b + d)/(2*a) 

 

Section 3.6 
 
1. 0 and n-1. 
 
3.  

def sum_digits(n): 
    """Return the sum of the digits in n.""" 
    return sum(int(d) for d in str(n)) 

 
7.  

[1, 2, 3, 4] 
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4 Algorithms and while and for Loops 
Section 4.2 

 
2.  

  Input: n 
  k ← 1 
  sum ← 0 
  while k ≤ n: 
      sum ← sum + k 
      k ← k + 1 
  Output: sum  

 
3.  

  Input: m, n   
  quotient ← 0 
  while m ≥ n: 
      m ← m - n 
      quotient ← quotient + 1 
  remainder ← m 
  Output: quotient, remainder 

 

Section 4.3 
 
2.  

def sum_alt_reciprocals(n): 
    """Return 1 - 1/3 + 1/5 - ... up to 1/n.""" 
    k = 1 
    sign = 1 
    _sum = 0 
    while k <= n: 
        _sum += sign/k 
        k += 2 
        sign = -sign 
    return _sum 
 
from math import pi 
 
print('pi =', pi) 
for n in (1000, 10000, 100000): 
    s = 4*sum_alt_reciprocals(n) 
    print('n = {0:7d}: 4*sum = {1:15.13f} diff = {2:15.13f}'.format(n, 
                                                            s, abs(pi - s))) 

 
3.  

n_max = int(input('Enter a positive odd integer: ')) 
sum_n = 0 
for n in range(1, n_max+1, 2): 
    sum_n += n 
    print(n, sum_n) 
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6.  
n_max = -1 
while n_max <= 0: 
    s = input('Enter a positive integer: ') 
    try: 
        n_max = int(s) 
    except ValueError: 
        print('Invalid input') 
 
print() # print a blank line 
 
n = 1 
sum1n = 0 
sum1n2 = 0 
while n <= n_max: 
    sum1n += n 
    sum1n2 += n*n 
    print('{0:3d} {1:6d} {2:6d} {3:6g}'.format(n, sum1n, sum1n2, \ 
                                         3*sum1n2//sum1n)) 
    n += 1 

 
7.  

def print_square(n): 
    print(' ' + (n-2)*'-') 
    for k in range(1, n-1): 
        print('|' + (n-2)*' ' + '|') 
    print(' ' + (n-2)*'-') 

 
or 
 

def print_square(n): 
    print(' ' + (n-2)*'-' + '\n' + (n-2)*('|' + (n-2)*' ' + '|' + '\n') 
                                                           + ' ' + (n-2)*'-') 

 
8.  

def my_pow(x, n): 
    p = 1 
    while n > 0: 
        p *= x 
        n -= 1 
    return p 
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5 Strings, Lists, Dictionaries, and Files 

Section 5.2 
 
2.  

def is_palindrome(word): 
    return word == word[::-1] 

 

Section 5.3 
 
1.  

def to_swedish(date): 
    slash1 = date.find('/') 
    slash2 = date.find('/', slash1+1) 
    return (date[slash2+1:] + '-' + 
            date[:slash1].rjust(2, '0') + '-' + 
            date[slash1+1:slash2].rjust(2, '0')) 

 
3.  

def startswith(s, sub): 
    return s[:len(sub)] == sub 
 
def endswith(s, sub): 
    if len(sub) == 0: 
        return True 
    return s[-len(sub):] == sub 

 
4.  

def get_digits(s): 
    digits = '' 
    for c in s: 
        if c.isdigit(): 
            digits += c 
    return digits 

 
7.  

def is_valid_amt(s): 
    s = s.strip() 
    dot = s.find('.') 
    if dot == -1: 
        return len(s) > 0 and s.isdigit() 
    if dot == 0 or dot != len(s) - 3: 
        return False 
    return s[0:dot].isdigit() and s[dot+1:].isdigit() 

 
8.  

def remove_tag(s): 
    start = s.find('<') 
    if start == -1: 
        return s 
    end = s.find('>', start + 1) 
    if end == -1: 
        return s 
    return s[:start] + s[end+1:] 
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Section 5.4 
 
1.  

def reverse(lst): 
    i = 0 
    j = len(lst) - 1 
    while i < j: 
        lst[i], lst[j] = lst[j], lst[i] 
        i += 1 
        j -= 1 

 
4.  

newnums = [x + 1 for x in nums] 
 
7. The first time through the for loop, x > a[i] is executed twice; it is true once and false once.  The 

next time through, the condition is true 3 times and false once, because b[0] has been inserted into 
a.  The next time, it’s true 5 times and false once.  This pattern continues until the final time through 
the loop.  Therefore, the total number of times the comparison is executed is 

2 200
2 4 6 ... 196 198 199 100 1 10099

2

           
 

. 

 
def merge(a, b): 
    i = 0  # Moved outside the while loop: no need to start 
           #   searching from the beginning of a because b is sorted 
    for x in b: 
        while i < len(a) and x > a[i]: 
            i += 1 
        a.insert(i, x) 
        i += 1  # Advance to the next position in a 

 
This code executes x > a[i] 100 2 1 199    times. 

 

Section 5.5 
 
2.  

alligator = {'Title' : 'Alligator', 
             'Band' : 'The Nationals', 
             'Duration' : 4 * 60 + 5} 

 
3.  

def reverse_dictionary(d): 
    new_d = {} 
    for k in d.keys(): 
        new_d[d[k]] = k 
    return new_d 
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Section 5.6 
 
1.  

pathname = input('File name: ').strip() 
f = open(pathname) 
line_number = 1 
for line in f: 
    print('{0:4d} {1:s}'.format(line_number, line), end='') 
    count += 1 
f.close() 

 
3.  

pathname = input('File name: ') 
s = input('Target string: ') 
f = open(pathname) 
for line in f: 
    if s in line: 
        print(line, end='') 
f.close() 

 

6 Number Systems 

Section 6.2 
 
1.  18 is the only two-digit number that is equal to 

twice the sum of its digits. 

10 2( ) 8 1, 8a b a b a b a b        

 
10 7( ) 3 6 2a b a b a b a b         21, 42, 63, 84 are the two-digit numbers that are equal 

to seven times the sum of their digits. 
 
3. The number in each row has the form 100 10a b c  .  In the nine numbers in all rows, a, b, and c 

run through all values 1 through 9, so the sum of these numbers is 100 10s s s  , where 
.  Therefore, the sum of the numbers in each column is 

. 
1 2 3 4 5 6 7 8 9 4s          

45(100 10 1) 45 111 4995    
5

 
4.  10 315 9 2 3 120   

10 324 2 9 2 3 220      
 
6.  2 110011100 128 16 8 4 156     0

 
9.  

  201       201 
+  12     -  12 
  ---       --- 
  220       112 
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10. The number is even if and only if the sum of its digits in base 3 is even, because 
 

    1
1 1 0 1 13 3 ... 3 ...n n

n n n na a a a a a a a
            0   

   1 1 1
21

222...2 22...2 ... 2 2 111...1 11...1 ...n n n n
nn

a a a a a 


             1a

6

2

2

 

 
So the sum of the digits of an even number must be divisible by 2, which means the number of 1s 
among the digits must be even. 

 

Section 6.3 
 
1.  and . 7

21111111 2 1 127   152 1 32767 
 
3.  2 1010 1110 1011 2EB
 
5.  10 24 100

2 101011100   4 101110000   (add two zeros on the right). 

2 101011100  / 4 10111   (remove two zeros on the right). 
 

Section 6.4 
 
1.  16 16FFFFFACE 532 1330   
 
2. Because a float in Python has “only” 17 significant digits, the least significant digits in 

1000000000.0000000001 are lost. 
 
4.  

>>> n = 1 
>>> while int((17.0 / n) * n) == 17.0: 
        n += 1 
>>> 
>>> n 
4211 

 
 

Section 6.5 
 
1. There are 6  pairs of integers (n, m) such that 5 4 3 2 1 21      0 7m n   . 

 
def pythagoreanTriple(m, n): 
    return (n*n - m*m, 2*m*n, n*n + m*m) 
 
for m in range(1, 7): 
    for n in range(m+1, 8): 
        print(pythagoreanTriple(m, n)) 
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7 Boolean Algebra 

Section 7.2 
 
2. I did my homework and I went to see a movie. 
 
3. Here or there 
 
6.  

P Q R Q or R P and (Q or R) 
F F F F F 
F F T T F 
F T F T F 
F T T T F 
T F F F F 
T F T T T 
T T F T T 
T T T T T 

 
8. (P and (not Q)) or ((not P) and Q) 
 
 

Section 7.3 
 
2.  

 

 

0 -4 -3 -2 -1 1 2 3 4 

 
 
4.  

 

 

2 

1 
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5.  

 

 

1 

1 

1 

1 

2 1 

2 

2 

x 

x 

x 

x 

x 

 
 
6. 34% -12% = 22% were only obese 

14% - 12% = 2% had only diabetes 
12% had diabetes and were obese 
22% + 2% + 12% = 36% were obese, had diabetes, or were both obese and had diabetes. 
 
Another way to look at it: .  This is an example of the inclusion-exclusion principle. 34 14 12 36  

 
7. If  and  are the truth sets of p and q, respectively, then pA qA p q  if and only if . p qA A

 
10. s1 ^ s2 = (s1 | s2) - (s1 & s2) 
 

Section 7.4 
 
1.  

n > 0 and n % 2 == 0 
 
3. Only (c) 
 
4.  

def num_days(month): 
    if (month == 'January' or month == 'March' or month == 'May' 
        month == 'July' or month == 'August' or month == 'October' or 
        month == 'December'): 
        return 31 
    elif month == 'February': 
        return 28 
    elif (month == 'April' or month == 'June' or 
          month == 'September' or month == 'November'): 
        return 30 

 
or 
 

def num_days(month): 
    if month in ('January', 'March', 'May', 'July', 'August' 
                                          'October', 'December'): 
        return 31 
    elif month in ('April', 'June', 'September', 'November'): 
        return 30 
    elif month == 'February': 
        return 28 

 
5.  

def is_leap_year(year): 
    return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0) 
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7.  
('+' in s and '-' not in s) or ('-' in s and '+' not in s) 

 
8.  

def is_hex_digit(d): 
    """ Return True if d is a single character and d 
        is a hex digit: '0' - '9', 'a' - 'f' or 'A' - 'F'; 
        otherwise return False. 
    """ 
    return len(d) == 1 and d in '0123456789abcdefABCDEF' 

 
11.  

def is_earlier_than(date1, date2): 
    month1, day1, year1 = date1 
    month2, day2, year2 = date2 
    return (year1 < year2 or  
            (year1 == year2 and month1 < month2) or  
            (year1 == year2 and month1 == month2 and day1 < day2)) 

 
Another solution: 
 

def is_earlier(date1, date2): 
    month1, day1, year1 = date1 
    month2, day2, year2 = date2 
    if year1 < year2: 
        return True 
    elif year1 > year2: 
        return False 
    if month1 < month2: 
        return True 
    elif month1 > month2: 
        return False 
    return day1 < day2 

 

8 Digital Circuits and Bitwise Operators 
Section 8.2 

 
1.  

 

 

 
 
3.  

 

 + 
 
- 
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5. AND 
 
7.  

 

 A 
B 
C  

 
8.  

 

 A 
B 

 
 

9.  

 

 A 
B 

 
 

Section 8.3 
 
1. a & b = 01000110 

a | b = 11110111 
a ^ b = 10110001 
a << 1 = 11001110 
b >> 2 = 00110101 

 
3.  

if (status_reg & 0x0008) != 0 and (status_reg & 0x0020) != 0 
    ... 

 
4.  

def divisible_by8(n): 
    """Return True if n is divisible by 8; 
       otherwise return false. 
    """ 

    return n & 0x07 == 0 
 
5.  

pattern ^= 0x00ffffff 
 
7. byte & 0x2A != 0 
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9.  
def rev_bits(n): 
    x = n & 0xC0000000 
    bit1 = 1 
    bit2 = 0x20000000 
    for k in range(29, 0, -2): 
        x |= (n & bit1) << k 
        x |= (n & bit2) >> k 
        bit1 <<= 1 
        bit2 >>= 1 
    return x 

 
12. The & and | operators can be applied to Boolean expressions, but they do not use short-circuit 

evaluation.  Try, for example, 
 

>>> x = 0 
>>> x != 0 & 1/x > 1 
ZeroDivisionError: division by zero 

 

9 Turtle Graphics 

Section 9.2 
 
See PY\PythonCode\TurtleExercises.py. 
 

Section 9.3 
 
See PY\PythonCode\TurtleExercises.py. 
 

Section 9.4 
 
1.  242 16,777,216
 
3. 1920/1200  = 1.6; the golden ratio is approximately 1.618.  Pretty close. 
 
5 See PY\PythonCode\TurtleExercises.py. 
 

10 Sequences and Sums 

Section 10.2 
 

2. 
1

( 1na
n n


 )

6

 

 
4.  7 1 12 16 21 3 18 3 11 3a a d d a a d          
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1 d7. ; .  Adding these two equalities together, we get 1n na a d  1n n n na a d a a     

1 1
1 12 n na a 

2
n n

n n

a a
a a  

 


  . 

 
9. Yes; for example, 0, 0, 0, ... or 1, 1, 1, ... or any other sequence in which all terms have the same 

value. 
 
10. 1 
 

Section 10.3 
 

3. The sum of the first n odd numbers is   2

1

1 (2 1) 2
2 1

2 2

n

k

n n
k n n



n
 

    . 

 
6. 2 1... n

ns a ar ar ar       

2 3 ... n n
n nrs ar ar ar ar rs s ar a         n  

1

1

n

n

r
s a

r





. 

If 
1

2
a   and 

1

2
r  , then 

1 1
1 11 12 2 1

1 12 21
2 2

n n

n n
s

 
     



1

2

2

. 

 

7.  
6

1

10 6543210d

d

d


 
 

9. , so ( 1)( 2) ( 1) ( 1) 3 ( 1) 3 3k k k k k k k k k k         2 ( 1)( 2) ( 1) ( 1)

3

k k k k k k
k k

    
     

 2

1

( 1) 2( 2) 3( 1)( 2) ( 1)

3 2 6

n

k

n n nn n n n n
k



    
     

( 1)(2 1)

6

n n n 
. 

 

Section 10.4 
 

2. 
1

1

100n

n

n





  diverges because 
1 1

100 100

n

n


 . 

 

4. 
1

0

1

1

nn
k

k

r
r

r








 .  The series converges to 
1

1 r
 if and only if 1r  , that is, . 1 1r  

 

5. 
1 1 1

1 ...
3 5 2 1n

    


...  diverges.  Indeed, 

1 1 1 1 1 1 1 1 1 1 1
1 ... ... ... ... 1 ... ...

3 5 2 1 2 4 6 2 2 2 3n n
                    n

, and the harmonic 

series diverges. 
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7. 
3

1

1

n n




  converges because 

3 2

1 1 1
0

( 1)n n n n
  


, and we know that the telescopic series 

1

( 1n n )  

converges. 
 

8. Let  be the perimeter of the snowflake after n iterations.  Then nP 1

4 4

3 3

n

n nP P 
    
 

P , so the 

perimeter of the snowflake increases without bound. 
 
 

On the first iteration we add 
1

3
9 3

A
A   to the area.  On the second iteration we add 

1 4
3 4

81 9 3

A
A    .  On the third iteration we add 

2
2

3

1 4
3 4

9 9

A
A

 
3

   
 

.  And so on.  So, after n 

iterations, the area is 
2 1

4 4 4
1 ...

3 9 9 9

n
A

A
            

     
 .  As we know, the geometric series 

2 1n
4 4 4

1 ... ...
9 9 9

          
   

 converges to 
1

4 51
9

9



.  So, the area of the snowflake converges to 

9 8

3 5 5

A
A   A .  Thus the Koch Snowflake has an “infinite” perimeter and a finite area! 

 

Section 10.5 
 
1.  is odd;  is odd;  is even.  The Fibonacci sequence goes odd, odd, even, odd, odd, 

even, ... because the sum of two odd numbers is even and the sum of an even and an odd number is 
odd.  Therefore, every third Fibonacci number is even.  

1 1F  2 1F  3 2F 

999F  is even; 1000F  is odd. 
 
4. There is one path from A and one path from B to .  There is one path from A and there are two 

paths from B to 2C .  There are two paths from A and three paths from B to 3C .  Let  and 

 be the number of paths from A to n  and from B to nC , respectively.  It looks like 

1C

( )AP n

( )BP n C ( )A nP n F  

and 1( )B nP n F  .  Indeed, any path from A or from B to  must go through either 1nC   or nC 2nC  , so 

 and ( )P n (A AP n 1) ( 2)AP n  ( ) (P n P n 1) (P n 2)BB B     — Fibonacci numbers again! 
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5. (a)  
def fibonacci_list(n): 
    """ Return a list fibs of length n+1 in which fibs[0] is 0 
        and fibs[k] is the k-th Fibonacci number for 1 <= k <= n. 
    """ 
    fibs = (n+1)*[0] 
    fibs[1] = fibs[2] = 1 
    for k in range(3, n+1): 
        fibs[k] = fibs[k-1] + fibs[k-2] 
    return fibs 

 
    (c)  

def fibonacci(n): 
    """ Return the n-th Fibonacci number, where F(1) = F(2) = 1.""" 
    f1 = f2 = 1 
    for k in range(3, n+1): 
        f1, f2 = f2, f1 + f2 
    return f2 

 
This code is also included in PY\PythonCode\Fibonacci.py. 

 
6. 
 

f = fibonacci_list(10) 
s = 0 
for n in range(1, 10, 2): 
    s += f[n] 
    print(n, s) 

 
The output is: 
 

1 1 
3 3 
5 8 
7 21 
9 55 

 
This code is also included in PY\PythonCode\Fibonacci.py. 
 

 

nIt looks like 1 3 2 1 2... nF F F    

1 3 2 1 2 1... n nF F F F     
F

)

.  Indeed, this is true for n = 1, 2, 3, 4, 5.  Suppose it is true for 

n.  Then  — so it is also true for n+1.  It must 

be true for all n. 
2 2 1 2 2 2( 1n n n nF F F F   

 

7.  1 1

25 5

n n
n n

n nF F
      

5
 . 

 
9. 2 2

2 1 1n n nF F F  

2 2 1 2n n

 and  2 2
2 1 1n n nF F F   

2 2
1 1 ( )n n n n

2 2 2
1 1 1 2n n n n n 1F F F   F F F F     F F F F     , Q.E.D. 
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10.  
x = 1 
for n in range(1, 101): 
    print(n, x) 
    x = 1 + 1/x 

 
This sequence converges to the golden ratio. 

 

11 Parity, Invariants, and Finite 
Strategy Games 

Section 11.2 
 
2. 27 = 128.  The first seven bits can be anything; the eighth bit is determined by the first seven. 
 
4. The 0 bit in the third row and fourth column (because the parities of this row and this column are 

odd). 
 
5.  

def correct_error(t): 
    """Correct a parity error in one bit in a rectangular table.""" 
    n_rows, n_cols = len(t), len(t[0]) 
    error_row = error_col = -1 
 
    # Find the index of the row with error: 
    for r in range(n_rows): 
        if t[r].count('1') % 2 == 1: 
            error_row = r 
 
    if error_row == -1: 
        return 
 
    # Find the index of the column with error: 
    for c in range(n_cols): 
        count = 0 
        for r in range(n_rows): 
            count += int(t[r][c]) 
        if count % 2 != 0: 
            error_col = c 

 
    # Correct the error: 
    s = t[error_row] 
    d = '0' if s[error_col] == '1' else '1' 
    t[error_row] = s[0:error_col] + d + s[error_col+1:] 
 
t = ['011011', '100010', '101001', '010100'] 
print(t) 
correct_error(t) 
print(t) 

 
6. The last column and the last row of the table are determined by the first three rows and the first five 

columns.  The number of tables with even parity is equal to the number of tables with odd parity — 
both numbers are equal to 152 . 
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7.  
def is_valid_UPC(s): 
    """ Return True if s represents a valid UPC string of 12 digits.""" 
    c_sum = 3*sum(int(d) for d in s[0::2]) + sum(int(d) for d in s[1::2]) 
    return c_sum % 10 == 0 
 
print(is_valid_UPC('072043000187')) 
print(is_valid_UPC('072043000188')) 
print(is_valid_UPC('072040300187')) 

 
This code is also included in PY\PythonCode\Checksums.py. 

 
8. (a) It does.  The numbers 3ꞏd, for d from 0 to 9, all end with different digits, so if you change one 

digit in the UPC, the checksum will no longer be 0.  
 

  (b) If we were to multiply by 2, then 5 could be substituted for 0, and vice-versa, and the 
checksum would remain unchanged. 

 
  (c) It does not.  We can transpose any 2 digits whose difference is 5, such as 1 and 6.  

. 3 1 6 3 6 1 mod10    
 

Section 11.3 
 
1. The difference between the number of uncovered black squares and the number of uncovered white 

squares remains constant, because each domino always covers one black square and one white 
square.  At the beginning the difference is 2, so it can’t be 0 at the end. 

 

3. It is an open interval on the diagonal line 
2

p
x y  : 

 

 

 

x 

y 

O 

C 
B 

A 

2

p
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5. As we have seen in question 4, the area of the rectangle is constant when its vertex C lies on the 

hyperbola, such as 
1

y
x

 .  The perimeter is constant when C is on a diagonal line 
2

p
x y  .  For 

the smallest perimeter we need to find the diagonal line that is closest to the origin, yet intersects 
with, or at least touches, the hyperbola.  As we shift the diagonal line parallel to itself away from the 
origin, it eventually touches the hyperbola at (1, 1).  That point gives the rectangle with the smallest 
perimeter; that rectangle is a square. 
 

 

 

x 

y 

O 

C 

 
 
6. The result does not depend at all on the order of pairs chosen.  To see this, replace each plus with +1 

and each minus with -1.  Then the described operation is equivalent to replacing a pair of numbers 
with their product.  The end result is the product of the original numbers. 

 
9. For example, in 

 
def my_pow(x, n): 
    k = 0 
    p = 1 
    while k < n: 
        p *= x 
        k += 1 
    return p 

 
the loop invariant is kp x . 

 

Section 11.4 
 
1. The number of stones remaining in the pile is evenly divisible by 5. 
 
3.  

 

 

 
 
The first player can win by moving to a “plus” square on the first move. 
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4. Initially there are two piles of stones with equal numbers of stones in them.  A player must either 
take one stone from either pile, or take two stones, one from each pile.  The safe positions are the 
ones in which the number of remaining stones in each pile is even. 

 
7.  

 

 

 
 
The correct first move is to go to the last position shown above. 

 
8.  

3: 011 
4: 100 
5: 101 
6: 110 

 
The number of 1s in the leftmost column is odd, so this is not a safe position. 
 

9.  
6: 0110 
8: 1000 
11: 1011 

 
We need to flip the bits in the second and fourth columns in the ‘6’ pile: 
 

3: 0011 
8: 1000 
11: 1011 

 
 In other words, we need to take three stones from the ‘6’ pile. 

 
12. Let’s call every other stack “white” and the rest “black.”  Suppose you go first.  Note that before 

your first move and before each of your moves, the colors of the stacks on the two ends are different.  
After your move these colors are the same, and your opponent is forced to take one of them.  At the 
outset, count the total number of coins in the white stacks and compare it to the total number of coins 
in the black stacks.  Pick the color that has more coins in it and stick with this color: always take the 
stack of that color, forcing your opponent to take a stack of the opposite color.  This strategy works 
for any even number of stacks. 
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12 Counting 

Section 12.2 
 
1. 10ꞏ10ꞏ10 = 1000 
 
3. 21ꞏ5ꞏ21 = 2205 
 
7.  8 8 8 242 2 2 = 2 = 16777216 
 
8. .  First choose a peg for the largest disk, then for the second largest, and so on. 53 243
 

Section 12.3 
 
1. 9ꞏ9ꞏ8 = 648 
 
4. 8ꞏ7ꞏ6ꞏ5ꞏ4ꞏ3 = 20160 
 
5. The same answer as in Question 4, only this time you “seat” chairs on people, not people on chairs. 
 

7. 
1

9ꞏ8 ꞏ 8ꞏ7ꞏ6ꞏ5ꞏ4ꞏ3 725760 mins 12096 hours
2
   = 504 days at 24 hours/day. 

9ꞏ8 for M, S; 
1

2
 for solving, on average, after half of the trials. 

 

8. BINARY: 
6!

2
360

  seconds 

DECIMAL: 
7!

14
360

  seconds 

CONVERSATION: 
12!

1330560
360

  seconds = 369.6 hours = 15.4 days 

 

Section 12.4 
 

1. 
12 11

66
2


  

 

4. 
4!

12
2
 .  Seat the hosts first; 4! ways to seat the guests, divided by 2 for mirror arrangements. 

 

5. 
6!

30
6 4




.  6! ways to color a cube in a fixed position divided by 24 ways to position the cube: 6 

ways to stand the cube on one side and 4 ways to rotate the cube on that side. 
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6. 6ꞏ12 for the first flight; 5ꞏ12 for the second flight; 4ꞏ12 for the third flight.  But the order of flights 
does not matter, so we have to divide the previous result by the number of permutations of 3.  The 
answer is 6ꞏ12ꞏ5ꞏ12ꞏ4ꞏ12/3! = 34560. 

 
7. 8! = 40320.  There must be a rook in each row; 8 ways to choose a rook’s position in the first row, 

times 7 ways to choose a rook’s position in the second row, and so on. 
 

Section 12.5 
 
1. 10 
 

3.  
40 40

658008
5 35

       
   

 

5.  
9 6

1680
3 3
       
   

 
7. 13 ways to choose the first rank; 4 ways to choose 3 cards of that rank; 12 ways to choose the second 

rank; 6 ways to choose 2 cards of that rank.  13ꞏ4ꞏ12ꞏ6 = 3744. 
 

9. The number of different ways to reshuffle is 
6

20
3
   
 

.  The number of different truth tables is 

.  So not all arrangements result in different truth tables. 42 16
 

Section 12.6 
 
1.  12 6 2 20  
 
3. 34 

 
          n           m           
 2 none 
 3 2 
 4 3 
 5 2, 3, 4 
 6 5 
 7 2, 3, 4, 5, 6 
 8 3, 5, 7 
 9 2, 4, 5, 7, 8 
 10 3, 7, 9 
 11 2, 3, 4, 5, 6, 7, 8, 9, 10 
 12 5, 7, 11 
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6. 3a: (7+7+7)  
4

4
3
   
 

 2a+b:6+6+9; 8+8+5; 9+9+3  
4 4

3 72
2 1
         
   

a + b + c: 2+ 9+10; 3+8+10; 4+7+10; 4+8+9; 5+6+10; 5+7+9; 6+7+8  
4 4 4

7 448
1 1 1
              
     

4 + 72 + 448 = 524 
 
7.  3 39 10 8 9 3168   
  

9. The total number of paths is .  The number of paths that go through C is .  

The number of paths that do not go through C is 

6
20

3
   
 

4 2
12

2 1
       
   

20 12 8  . 
 
10.  5 5 5 5 4 4 4 462 36 52 26 62 36 52 26 493586080       
 

13 Probabilities 

Section 13.2 
 

1. 
1

5
 

 

3. 
1 1
36 1947792
6


 
 
 

 

 

5. 
1

38
 and 

18

38
 

 

Section 13.3 
 

1. 
13 48 1

52 4165
5




 
 
 

 

 

2. 
4 1

52 649740
5


 
 
 
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3. 7

70
10

1.122 10
80
20



 
 
   
 
 
 

 

 

5. 
52 51 50 52 48 44 73

52 51 50 425

    


 
 

 

7. 

16 15 14

16

16 16
5 5 5

1 2count(0) count(1) count(2)
0.48679

total # of arrangements 6

                 

 
8. All different ranks — 10 possibilities: 

2+8+11; 2+9+10; 3+7+11; 3+8+10; 4+6+11; 4+7+10; 4+8+9; 5+6+10; 5+7+9; 6+7+8 
Two of the same rank, different third — 6 possibilities: 
 5+5+11; 6+6+9; 8+8+5; 9+9+3; 10+10+1; 1+11+9  
All three the same — 1 possibility: 7+7+7 
This results in  

 

4 4 4 4 4 4
10 6 1

1 1 1 2 1 3 788
52 22100
3

                          
           

 
 
 

 

 

Section 13.4 
 

1. 
1 1 1 1

6 6 6 216
    

 

3. 
5 5 5 125

6 6 6 216
    and 

125 91
1

216 216
   

 

5. 
3 4 3

10 10 25
   

 

6. Win after 1 rally: 
2

3
 

Win after 1 or 3 rallies: 
2 1 2 2 2 2 22

1
3 3 3 3 3 9 27

       
 

 

Win after 1, 3, or 5 rallies: 
2

2 1 2 2 1 2 1 2 2 2 2 2 206
1

3 3 3 3 3 3 3 3 3 3 9 9 243

                  
 

Win eventually: 
2

2 2 2 2 1
1 ...

23 9 9 3 1
9

             

6

7
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8. 
2 2 2

1 5 20 426

30 30 30 900
            
     

 

 

Section 13.5 
 
1.  

from random import choice, shuffle, sample 
 
def random_hand(): 
    """Generate a random hand of 5 cards.""" 
    deck = [(s, r) for s in 'SHDC' for r in range(1, 14)] 
    hand = []; 
    while len(hand) < 5: 
        card = choice(deck) 
        hand.append(card) 
        deck.remove(card) 
    return hand 

 
Or, shorter: 
 

def random_hand(): 
    """Generate a random hand of 5 cards.""" 
    deck = [(s, r) for s in 'SHDC' for r in range(1, 14)] 
    shuffle(deck); 
    return deck[:5] 

 
Or, even shorter: 

 
def random_hand(): 
    """Generate a random hand of 5 cards.""" 
    deck = [(s, r) for s in 'SHDC' for r in range(1, 14)] 
    return sample(deck, 5) 

 

2. 
3

5 125

26 17576
   
 

 

 
8.  

from random import random 
 
def positive_choice(s): 
    """Return a positive integer randomly chosen from s.""" 
    k = 0 
    r = None 
    for x in s: 
        if x > 0: 
            k += 1 
            if random() < 1 / k: 
                r = x 
    return r 
 
s = [-1, 1, 2, 0, 3, -2, 4, 5, -6] 
counts = (max(s) + 1)*[0] 
n = 10000 
for t in range(n): 
    counts[positive_choice(s)] += 1 
print(counts) 

 
This code is also included in PY\PythonCode\RandomQuestions.py. 
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14 Vectors and Matrices 

Section 14.2 
 
1.  

 

2 2

2 2

2 2

(4, 3) 4 3 25 5

(2, 2) 2 2 8 2 2

( 2,1) 2 1 5

u u

v v

w w

    

    

     

 

 

 
 

 

3. (a)  2 25 12 169 13     (b)  2 21 7 50 5 2     (c)   2 23 4 25 5      

(d)  2 2 23 4 12 169 13     
 

4. ( 3, 4); 5u u   
 

  unit vector with the same direction is 
3 4

,
5 5

u

u
   
 


 . 

 
5. (a)   (2, 2) (2, 2) (4, 0) (0, 4)u v u v u v      

     
     

(b)   (2, 2) (2,1) (4, 3) (0,1)u v u v u v     
    

(c)   (0, 2) ( 3, 2) ( 3, 0) (3, 4)u v u v u v        


     
(d)   (2, 0) (3, 0) (5, 0) ( 1, 0)u v u v u v      

     
(e)   (0, 2) (0, 3) (0, 1) (0, 5)u v u v u v       

     
(f)   (0, 2) (0, 2) (0, 0) (0, 4)u v u v u v      

 

7. Choose the point  on the line (1, 2) 2y x  and the point (  on the line 2,1)
2

x
y  .  If 

, then  ,1v 


(1, 2), 2u 
 4

4, 5 cos  0.6435
5

u v u v        
   

 radians. 

 
8.  and (  ( 5,1) 5, 1)
 

13. Take .  Then ( , , ) and (1,1,1)u x y z v 
 

1u v x y z    
 

, 
2 2 2u x y z2  


and 
2

3v 


. 

2 22 2 2 2 2 1
( ) 1 3( )

3
u v u v x y z x y z          
    2 2 , Q.E.D. 
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Section 14.3 
 
2.  

def display_matrix(m): 
    """Print out m with aligned columns.""" 
    for row in m: 
        for x in row: 
            print('{0:4d}'.format(x), end = '') 
        print() 
    print() 
 
m = [[1, 2, 3], 
     [11, 21, 31], 
     [21, 22, 33]] 
display_matrix(m) 

 
Output: 
 

   1   2   3 
  11  21  31 
  21  22  33 

 
This code is also included in PY\PythonCode\VectorsAndMatrices.py. 

 
5.  

def matrix_dot_vector(A, u): 
    """Return the vector Av.""" 
    n = len(u) 
    return [sum(A[r][c]*u[c] for c in range(n)) for r in range(n)] 

 
or 
 

def matrix_dot_vector(A, u): 
    """Return the vector Av.""" 
    return [dot_product(row, u) for row in A] 
 
 
A = [[1, 2, 3], 
     [4, 5, 6], 
     [7, 8, 9]] 
 
u = (100, 10, 1) 
v = matrix_dot_vector(A, u) 
print(v) 

 
Output: 
 

[123, 456, 789] 

 
This code is also included in PY\PythonCode\VectorsAndMatrices.py. 
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8.  
cos sin cos sin

sin cos sin cos

x x y

y x y

   
  

    
        





2 2

 

 

   
   
   

         

2 2

2 22 2

2 22 2

22 2 2 22 2

cos sin sin cos

cos 2 sin cos sin

sin 2 sin cos cos

sin cos sin cos

x y x y

x xy y

x xy y

x y x

   

   

   

   

   

  

  

    y

 

Q.E.D. 
 
11.  

def determinant3(a): 
    return (a[0][0]*a[1][1]*a[2][2] + 
            a[0][1]*a[1][2]*a[2][0] + 
            a[1][0]*a[2][1]*a[0][2] - 
            a[0][2]*a[1][1]*a[2][0] - 
            a[0][1]*a[1][0]*a[2][2] - 
            a[2][1]*a[1][2]*a[0][0]) 
 
def copy_matrix(a): 
    """Return a copy of a.""" 
    return [a[0][:], a[1][:], a[2][:]] 
 
def solve3(a, c): 
    """ Solve the system of three linear equations ax = c.""" 
    solution = 3*[None] 
    d = determinant3(a) 
    if d == 0: 
        return solution 
    for i in range(3): 
        b = copy_matrix(a) 
        b[0][i] = c[0] 
        b[1][i] = c[1] 
        b[2][i] = c[2] 
        solution[i] = determinant3(b) / d 
    return solution 

 
a = [[2, 3, 1], 
     [4, 6, 5], 
     [7, 9, 8]] 
 
c = [42, 96, 150] 
print('determinant = ', determinant3(a)) 
print(solve3(a, c)) 

 
Output: 
 

determinant =  9 
[4.0, 10.0, 4.0] 

 
This code is also included in PY\PythonCode\VectorsAndMatrices.py. 

 

 



36 CHAPTER 15  ~  POLYNOMIALS 

 

15 Polynomials 

Section 15.2 
 

1.    4 2 3 2 4 3 23 1 8 4x x x x x x x         9  

 
4.  

def negate(p): 
    """Return -p for a polynomial p.""" 
    return [-a for a in p] 
 
p = [1 ,-2, 3] 
print(negate(p)) 

 
Output: 
 

[-1, 2, -3] 

 
This code is also included in PY\PythonCode\Polynomials.py. 

 
8.  

   

y = sin x 

 
3

6

x
y x   

 
3 5

6 120

x x
y x    

 
 

3

6

x
x   approximates sin x quite well for 1 1x   ;  

3 5

6 120

x x
x    approximates sin x  very well for 

. 2 2x  
 

Section 15.3 
 
1.  

def reduce(p): 
    """Divide p by the leading coefficient.""" 
    f = 1/p[0] 
    result = [f*a for a in p] 
    result[0] = 1 
    return result 

 
This code is also included in PY\PythonCode\Polynomials.py. 
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4.  
def multiply(p1, p2): 
    """Return p1*p2.""" 
    n = len(p1) + len(p2) - 1 
    result = n*[0] 
    for i in range(len(p1)): 
        for j in range(len(p2)): 
            result[i+j] += p1[i] * p2[j] 
    return result 

 
This code is also included in PY\PythonCode\Polynomials.py. 

 
7.  

n = int(input('Enter a positive integer: ')) 
p = [1]  # 1 
x_plus_1 = [1, 1]  # x + 1 
 
while n > 0: 
    p = multiply(p, x_plus_1) 
    n -= 1 
 
print(p) 
print(sum(p)) 

 
For instance, if the user enters 4, the output is [1, 4, 6, 4, 1] 16. 
 
This code is also included in PY\PythonCode\Polynomials.py. 

 

10. 2 2( )( ) ( )x u x v x u v x uv x px q         
2 4

,
2

p p
u v

 


q
 and 

2 4

2

p p q 
. 

 

Section 15.4 
 
2. For each element of the set, there are two possibilities: it is either in the subset or not.  Therefore, the 

number of possible subsets of a set of n elements is .  2n ... 2
0 1

nn n n
n

             
     

. 

 

4.  
0

2 (1 2)
n

k n

k

n
k

     
 

 3n
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7.  
def pascal_triangle(n): 
    """ Return the first n rows of Pascal's triangle in a list.""" 
    t = [[1]] 
    row = [1] 
    for k in range(1, n): 
        row = [1] + [row[i] + row[i+1] for i in range(k-1)] + [1] 
        t.append(row) 
    return t 
 
n = int(input('Enter a positive integer: ')) 
t = pascal_triangle(n) 
for row in t: 
    print(row) 

 
This code is also included in PY\PythonCode\PascalTriangle.py. 

 

8. When n = 1, .  When n > 1, 
2 2 2
1 0 2
           
     

2 2 1 2
1 2

n n n
n n n

                   
1

1





1

 

2 2 1 2 1
1 1

n n n
n n n

                  
2 2 2 1

1 1 2
n n

n n n
                   

2 2 2
1 1

n n n
n n n

                 

 

, Q.E.D. 

2 1 2 1 2 1 2 1 2 1 2
1 1 1

n n n n n n n
n n n n n n

                                            

 

16 Recurrence Relations and Recursion 

Section 16.2 
 
1. 15 
 

3. 
2, if 1

( )
2 ( 1), if

n
f n

f n n


    

 

 

4. 
10, if 1

( )
( 1) 20, if

n
f n

1f n n


    

 

 

7. 
6, if 3

( )
( 1), if

3

n
f n n

f n n
n


 

   
3
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Section 16.3 
 
1.  

def factorial(n): 
    """Return n-factorial for n >= 0.""" 
    if n == 0:  # 0! is 1 
        return 1 
    return n * factorial(n - 1) 

 
This code is also included in PY\PythonCode\Recursion.py. 

 
3.  

def eval_polynomial(p, x): 
    """Return p(x).""" 
    if len(p) == 1: 
        return(p[0]) 
    return x*eval_polynomial(p[:-1], x) + p[-1] 
 
print(eval_polynomial([1, 2, 3], 2)) 

 
This code is also included in PY\PythonCode\Recursion.py. 

 
4. (a) 

def print_digits(n): 
    """Print a triangle made of digits.""" 
    print(n * str(n)) 
    if n > 1: 
        print_digits(n - 1) 

 
  (b) 

def print_digits(n): 
    """Print an inverted triangle made of digits.""" 
    if n > 1: 
        printDigits(n - 1) 
    print(n * str(n)) 

 
5. If the three pegs are numbered 1, 2, and 3, the sum of the numbers is 6, so knowing two pegs you 

can find the number of the third by subtracting the total of the two known pegs from 6.  Therefore, 
spare_peg = 6 - from+peg - to_peg makes spare_peg equal to the number not used as 
from_peg or to_peg.   

 
6. The implicit base case is n == 1, when the program just moves one disk from from_peg to 

to_peg. 
 
8.  

2 disks: 3 moves 
3 disks: 7 moves 

 

1
4 disks: 15 moves 
n disks:  moves 2n 
 
The “lifespan of the universe” is about 584,942,417,355 years. 
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Section 16.4 
 
1. Base Case: . 2

1 1 1f  

Induction Step: Suppose 2
nf n .  Then 2 2

1 2 1 2 1 ( 1)n nf f n n n n         . 
 
3.  12 (n nL L n   2)

Base Case: . 2 1
2 2 2L    0

Induction Step: 2
12 ( 2) 2[2 ( 1)]n

n nL L n n n
        2 1 12 2 2 2 2n nn n  n       . 

 
4. Let nR  be the number of regions into which n lines divide the plane.  We will prove, using math 

induction, that 
( 1)

1
2n

n n
R


  .  This is true for 1n  , because 1

1 2
1 2

2
R


   .  Suppose this is 

true for any number of lines k < n (induction hypothesis).  In particular, 1

( 1)
1

2n

n n
R 


  .  When 

we add the n-th line, it is cut into n segments by the existing lines; each of these segments cuts an 
existing region into two, adding one region.  Therefore, 1n nR R  n  .   Using this recurrence 

relation and the induction hypothesis, we get 
( 1)n n

R n
  ( 1)

1 1
2 2n

n n 
    

  . 

 

17 Graphs 

Section 17.2 
 
1. For example: 

 

 

 

1 

2 

3 4 
5 

6 7 

 
 
2.  

 

 d 

c 

b a 

 
 
4. (a) and (b) are simple graphs; (c) is a multigraph; (d) has a loop 
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5. (b) 
12 11

66
2


  

 

Section 17.3 
 
1. (a) Yes  (b) No  (c) Yes 
 
2. Yes:  3, 4, 2, 5, 1A B C D E    
 
3. 11 different graphs, 6 of which are connected: 

 

 

 

 
 
4. Only if the subgraph is equal to the whole graph, because the number of vertices and the number of 

edges in two isomorphic graphs must be respectively the same. 
 
8. For example: call two finite sets equivalent if they have the same number of elements. 
 

Section 17.4 
 

1. 1 2 ...

2
nd d d  

.  We divide by two because each edge connects two vertices and will be counted 

twice. 
 

2. No: the number of edges would be 
2 2 4 3 6

8.5
2

   
 . 

 
5. Each vertex in the graph must be connected to all 1n   other vertices, so the graph is isomorphic to 

. nK
 
6. Start from any vertex, call it . Follow one of the edges from  to the next vertex, call it .  

Follow from  to the next vertex, .  And so on.  Because the graph has a finite number of 

vertices, at some point you will return to a vertex that has been visited before: .  But, if 

,  is already connected to 

1A 1A 2A

2A 3A

1i

1kA   iA

1i  iA A   and 1iA  , and its degree is 2, so it can’t also be connected to 

.  Therefore,  and  — you have returned to the starting point.  The subgraph with 

vertices  and the edges that connect them is isomorphic to .  There are no other 

edges that come out of these vertices because the degree of each vertex in the graph is 2.  If we start 
from any other vertex, B, we can trace a cycle that goes through B, and this cycle cannot intersect 
with the first.  (In fact, belonging to the same cycle is an equivalence relationship for the vertices of 
our graph.)  So, our graph must be a union of disjoint cycles.  But we know that it is connected, so it 
must consist of only one cycle.  We have to conclude that 

kA 1
, kA

i

1 2 , ...A A
1kA   1A

, kC

k n , and our graph is isomorphic to . nC
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10. In the Bridges of Königsberg puzzle, all four vertices have an odd degree, and removing any edge 
will make the puzzle solvable.  If we don’t want to begin or end the path on the island, it is better to 
remove one of the edges that goes out of the “island” vertex: 
 

 

 

 
 
12.  or  0L  2L 
 
14. For example,  is such a graph. nC
 
16.  

 

 

 
 
18. No.  Such a circuit would have to cross each of the three “bridges” (horizontal edges) once, but it 

must go from left to right and back an even number of times. 
 

Section 17.5 
 
 
1. Two directed graphs are called isomorphic if there exists a one-to-one correspondence between their 

vertices and a one-to-one correspondence between their directed edges, such that an edge goes from 
vertex A to vertex B in the first graph if and only if the corresponding edge goes from the vertex that 
corresponds to A to the vertex that corresponds to B in the second graph. 

 
3.  

 

 

A 

B 

2 

3 2 

1 

0 

3 

1 

2 

3 

5 

1 

0 

1 

2 

5 

6 

4 

1 

3 

1 4 

1 

3 

 
 
6. A directed graph has an Euler circuit if and only if for each vertex the number of arrows coming in is 

equal to the number of arrows going out. 
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Section 17.6 
 
1.  

 

 

1  1  0  0  0  1 
1  0  1  0  0  1 
0  1  0  1  0  0 
0  0  1  0  1  0 
0  0  0  1  0  1 
1  1  0  0  1  0 

A B C D E F  

A  

B  

C  

D  

E  

F  
 

 
3.  

 

 

0  1  0  0  1 
1  0  1  0  0 
0  1  0  1  0 
0  0  1  0  1 
1  0  0  1  0 

C5 

0  1  1  1  1 
1  0  1  1  1 
1  1  0  1  1 
1  1  1  0  1 
1  1  1  1  0 

K5 

 
 
4. Only (d) 
 
7. If 2B A , the element  in B is 1 if and only if the i-th and j-th vertices are connected by a path of 

length 2. 
ijb

 

Section 17.7 
 
1.  

 

 1 

1 

1 

1 

1 
1 

2 2 

2 

2 

2 

2 

2  
 
3. The endpoints of a path of odd length must be different colors; the endpoints of a path of even length 

must be the same color. 
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5. The necessary and sufficient condition for a graph to be colorable in two colors is that the graph does 
not contain any odd-length cycles.  This condition is necessary because if a graph contains an odd-
length cycle, we can’t properly color that cycle in two colors, let alone the whole graph. 
 
To show that this condition is sufficient, we need to show how to properly color in two colors any 
graph with no odd-length cycles.  Take any vertex O and color it black.  For any vertex X in the 
graph consider the shortest path from X to O.  If its length is even, color X black; otherwise color X 
red.  Let us show that this coloring is proper.  Take two vertices, X and Y, connected by an edge.  
Suppose they are colored in the same color.  Then their distances from O have the same parity.  
Suppose XO and YO are the shortest paths from X to O and from Y to O, respectively.  These paths 
first go separately, then they can meet at a vertex C (or O itself).  For example: 
 

 

 
1 

2 

2 
1 

2 1 

1 

O 
X 

Y 

C 

 
 
The lengths of the paths XC and YC also have the same parity.  These paths, combined with the XY 
edge, would form an odd cycle.  But we know our graph does not have such cycles. 
 
We have shown that a graph is properly colorable in two colors if and only if it does not contain any 
odd-length cycles. Q.E.D. 

 
8.  

 

 

 
 
You can actually replace any edge with a chain of “rhombuses,” like the one shown in the solution to 
Question 7. 
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9. This graph can be constructed in the shape of a three-layer “wedding cake” or a “lampshade”: 
 

 

 

 
 
The bottom layer is simply a pentagon (C5).  Note that if a pentagon is properly colored in three 
colors, and you consider pairs of neighbors for each vertex, you will encounter all possible 
combinations of two colors among them.  For example, in this colored graph — 
 

 

 A 

B 

E 

C 

D 

1 

2 3 

2 1  
 
— A and E, the neighbors of C, give the 1-2 pair; C and D, the neighbors of E, give the 1-3 pair; C 
and B, the neighbors of A, give the 2-3 pair.  (It is fairly easy to show that this is true for any polygon 
with an odd number of sides.)  This fact gives us a hint as to how to construct the middle layer.  
Let’s make it another pentagon, above the first one.  However, we won’t use its sides, only its five 
vertices.  We connect each vertex to the two neighbors of the vertex below it.  We don’t form any 
triangles when we do that.  To properly color the bottom and the middle layer, we will need to use 
all three colors in the middle layer.  For example, if a pair of neighbors is colored 1-2, the vertex 
above should be colored 3.  The final top layer consists of only one vertex.  We connect it to all five 
vertices of the middle layer.  There is no free color left for the top vertex, so this graph cannot be 
properly colored in three colors. 

 

Section 17.8 
 
2.  

 

 

A+B 

 
 
3. Consider a subgraph that includes the triangle and all the vertices inside.  It has fewer vertices than 

our graph, so it can be properly colored in p colors.  Now consider the subgraph that includes the 
same triangle and all the vertices outside.  It, too, can be properly colored in p colors.  We can rotate 
the colors in the second coloring in such a way that the three different colors used for the vertices of 
the triangle become the same as in the first coloring.  Now the colorings match on the border (our 
triangle), and we can put them together to color the original graph. 
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4. For example: 
 

 

 

 
 
5. When we say “Let’s take any two vertices that are not connected by an edge...” we forget that such 

vertices may not exist.  Our graph may be Kn ( ).  All we proved is that if the graph cannot be 
colored in three colors, our “gluing” process eventually reduces it to Kn. 

4n 

 
6. We assume the graph is fully triangulated; if it isn’t, we temporarily add a few edges.  When they are 

removed, the degree of any vertex can only decrease.  
3

2

R
E  , because each region is bounded by 

three edges, and each edge is shared by two regions.  If the degree of every vertex were greater than 

or equal to 6, we would have 
6

2

V
E  , because the number of edges meeting at each vertex would be 

greater than or equal to 6, and each edge connects two vertices.  Then we would have 
2

3

E
R   and 

3

E
V .  From Euler’s formula, 2V E R     

2
2 0

3 3

E E
E 2      — a contradiction.  

Our assumption that the degree of every vertex is greater than or equal to 6 cannot be true. Q.E.D. 
 
7.  

 

 

 
 
The smallest number of vertices in such a graph is 12.  If k is the number of vertices of degree 5 and 

the rest have a degree greater than or equal to 6, we would get 
6( ) 5 6

2 2 2

V k k V k
E

 
     

3 6

E k
V    (see the previous question).  Euler’s formula would give us 

2
2 2

3 6 3 6

E k E k
E k       12 . 
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18 Number Theory and Cryptology 

Section 18.2 
 
1. If  and , then .  On the other hand, if |d a |d b |d a b |d a b  and , then , that 

is, .  So,  and  have the same common divisors. 

|d b  | ( )d a b b 
|d a ,a b ,a b b

 
3.  

def gcd(a, b): 
    """Return the greatest common divisor of a and b.""" 
    if a > b: 
        return gcd(a - b, b) 
    elif a < b: 
        return gcd(a, b - a) 
    else: 
        return a     # or return b 

 
This code is also included in PY\PythonCode\NumberTheory.py. 

 
4.  

def gcd(a, b): 
    """Return the greatest common divisor of a and b.""" 
    while a > 0: 
        b, a = a, b % a 
    return b 

 
This code is also included in PY\PythonCode\NumberTheory.py. 

 
5. If a and b are relatively prime, the equation 1ax by   has a solution  0 0,x y .  Then  0 0,cx cy  is a 

solution of . ax by c 
 
10. Let  be an arithmetic sequence.  Since p and q are two different primes, they are 

relatively prime, and the equation 

, , 2 , ...c c p c p 

qx py c   has a solution  0 0,x y .    0 0,x kp y kq   is also a 

solution for any k, so there is a solution  ,x y  with y > 0.  Then qx c py   is a term of our 

arithmetic sequence that is divisible by q. 
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13. The equation  has a solution if and only if GCD(a, b, c) = 1. 1ax by cz  
 
1. Let GCD(a, b, c) = d.  , , and , so |d a |d b |d c |d ax by cz  .  Therefore, if 1d  , the 

equation  cannot have solutions. 1ax by cz  
 
2. Now let’s suppose that d = 1 and show that the equation 1ax by cz    has a solution.  Let 

GCD(a, b) = h.  h and c must be relatively prime (if they had a common divisor, it would be a 
common divisor of a, b, and c).  So, the equation 1hu cz   has a solution  ,u z .  Since 

GCD(a, b) = h,  and , where  and  are relatively prime.  So, the equation 

 has a solution 
1a ha 1b hb

,
1a 1b

1 1a x b y u  x y

) cz 

.  We get 

. 1 11 (h a x b 1x  1 1b y cz 1y ha h a   1x by cz  hu cz 
 

Section 18.3 
 
4. 1*2*...*13 + 1 = 30031 is not a prime. 

 
The above is the output from the following program: 
 

n = 1 
p = 2 
while p <= 1000: 
    if is_prime(p):  # is_prime is described in Section 7.4 
        n *= p 
        if not is_prime(n+1): 
            print('1*2*...*{0:d} + 1 = {1:d} is not a prime.'.format(p, n+1)) 
            break 
    p += 1 
if p > 1000: 
    print('Looks like all are primes.') 

 
If you want to know what the prime factors of 30031 are, use the program from Question 3. 
 
This code is also included in PY\PythonCode\NumberTheory.py. 

 
6. This is in fact true for any odd integer.  If p is odd, both p+1 and p-1 are even.  

2 2
1 1

2 2

p p
p

      
  





. 

 
7. Fibonacci numbers get pretty big fast: for example, 100 354,224,848,179,261,915,075F  .  A naive 

approach in which we generate Fibonacci numbers in sequence and check each for being a prime is 
not practical — it will run forever.  A better approach would be to use a standard iterative function 
for Fibonacci numbers and test 100F , 99F , and so on, until we find a prime.  We can try it for finding 

the largest Fibonacci prime among the first n Fibonacci numbers with n equal to, say, 25.  But this 
method will still run forever for n = 100, because testing a large number for primeness is not a trivial 
task.  Luckily, someone has already created a list of Fibonacci primes — see, for example, 
http://en.wikipedia.org/wiki/List_of_prime_numbers#Fibonacci_primes or 
https://oeis.org/A005478 or google “fibonacci primes”  As we can see, the largest Fibonacci 
prime that does not exceed 100F  is 99,194,853,094,755,497. 

 

http://en.wikipedia.org/wiki/List_of_prime_numbers#Fibonacci_primes
https://oeis.org/A005478
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c10. Each divisor d can be expressed as , where 1

1 ... kc
kd p p   1 1 2 20 , 0 , ...,0 k kc j c j c j      .  

The number of possible values for  is 1c 1 1j  , for  is 2c 2j 1 , and so on.  The total number of 

divisors is . 1 2( 1) ( 1) ... ( kj j     1)j 
 
11. Integers that are not relatively prime with n are divisible by p or by q (or by both).  The number of 

positive integers below n that are divisible by p is 
n

p
.  The number of positive integers below n that 

are divisible by q is 
n

q
.  The number of positive integers below n that are not relatively prime with n 

is 
n n n

p q pq
   (we need to subtract 

n

pq
 because we have counted the numbers divisible by both p 

and q twice).  The number of positive integers below n that are relatively prime with n is 

1 1
1 1

n n n
n n

p q pq p q

   
        
   





. 

 

If 1

1 ... kj j
kn p p   , then the number of positive integers below n that are relatively prime with n is 

1 2

1 1
1 1 ... 1

k

n
1

p p p

    
         
     

 .  This expression is called Euler’s totient function and is 

commonly denoted as ( )n .  The proof is similar. 

 

Section 18.4 
 
3.  

def elapsed_time(hour1, min1, hour2, min2): 
    return hour2 * 60 + min2 - hour1 * 60 - min1 

 
4.  

def thanksgiving(jan1): 
    november_1 = (january_1 + 304) % 7 
    first_thursday = 5 - november_1 
    if first_thursday <= 0: 
        first_thursday += 7 
    return first_thursday + 21 

 
Or, simply, 
 

def thanksgiving(january_1): 
    return (2 - january_1) % 7 + 21 

 
5.  

+ 0 1 2 3 4 5  * 0 1 2 3 4 5 
0 0 1 2 3 4 5  0 0 0 0 0 0 0 
1 1 2 3 4 5 0  1 0 1 2 3 4 5 
2 2 3 4 5 0 1  2 0 2 4 0 2 4 
3 3 4 5 0 1 2  3 0 3 0 3 0 3 
4 4 5 0 1 2 3  4 0 4 2 0 4 2 
5 5 0 1 2 3 4  5 0 5 4 3 2 1 
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8. , , 1 (mod 3)n   1 (mod 4)n   1 (mod 5)n   , and so on, 1 (mod 12)n   .  Therefore, the 

answer is the least common multiple of 3, 4, 5, ..., 12 minus 1, which is 27719. 
 

9. .  By Fermat’s Little Theorem,  2222222 1010 23 3 3  2210103 1 (mod 23) .  Therefore, 

. 22222 23 3 (mod 23) 9 (mod 23)
 
11. .  p is a prime and it is not 2 or 3, so it is odd and not divisible by 3.  p-1 and 

p+1 are two consecutive even numbers, so one of them must be divisible by 4.  Therefore, their 
product must be divisible by 8.  Also, p-1, p, and p+1 are three consecutive integers, so one of them 
must be divisible by 3.  It can’t be p, so it is either p-1 or p+1.  (

2 1 ( 1)( 1)p p p   

1)( 1)p p   is divisible by 8 and 

by 3, so it must be divisible by 24. 
 
14. (b) Any number m, such that 0 < m < p, has a reciprocal modulo p.  Only 1 and (p-1) are their own 

reciprocals.  So all the factors in (p-1)!, except 1 and (p-1), can be split into pairs such that the 
product of the numbers in each pair is 1 (mod p).  Therefore, ( 1)! 1 (mod )p p p    and 

( 1)! 1 0 (mod )p p   , that is, ( 1)! 1p    is divisible by p. 
 

Section 18.5 
 
2.  

abc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
def encode(text, key): 
    """Encode text using Vigenere cyper. 
        text contains only uppercase letters.""" 
    len_key = len(key) 
    code = '' 
    k = 0 
     
    for c in text: 
        i = abc.find(c) 
        j = abc.find(key[k]) 
        c = abc[(i + j) % 26] 
        code += c 
        k = (k + 1) % len_key 
         
    return code 
 
def decode(code, key): 
    """Decode code encoded with Vigenere cyper.""" 
    len_key = len(key) 
    text = '' 
    k = 0 
 
    for c in code: 
        i = abc.find(c) 
        j = abc.find(key[k]) 
        c = abc[(i - j) % 26] 
        text += c 
        k = (k + 1) % len_key 
 
    return text 
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key = 'LEMON' 
text = 'ATTACKATDAWN' 
 
print('<' + text + '>') 
code = encode(text, key) 
print('<' + code + '>') 
text = decode(code, key) 
print('<' + text + '>') 

 
Output: 
 

<ATTACKATDAWN> 
<LXFOPVEFRNHR> 
<ATTACKATDAWN> 

 
This code is also included in PY\PythonCode\Cipher.py. 

 
4.  

p = 170141183460469231731687303715884105727 
a = 618970019642690137449562111 
r = 5 
print(pow_mod(r, a, p)) 

 
Output: 
 

26328438978806941546616071351824726077 

 
This code is also included in PY\PythonCode\NumberTheory.py. 

 
6. We set , where (x, y) is a solution of the Diophantine equation D x ( 1)( 1) 1Ex p q y   

2y 
.  p = 13, 

q = 17, and E = 5.  5 .  D = 77. 12 16 1 5 192 1 77,x y x y x       
 
7. Alice locks a message in a box with her lock and sends the box to Bob.  Bob adds his lock to the box 

and sends the box back to Alice.  Alice receives the box, now locked with two locks, removes her 
lock, and sends the box back to Bob.  Bob removes his lock and reads Alice’s message. 
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