

Coding
in

Python

and

Elements of
Discrete Mathematics

Answers and Solutions

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin
Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2019-2021 by Maria Litvin, Gary Litvin, and
Skylight Publishing

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the authors and Skylight Publishing.

Library of Congress Control Number: 2019905086

ISBN 978-0-9972528-4-2

The names of commercially available software and products mentioned in this book are used for identification purposes
only and may be trademarks or registered trademarks owned by corporations and other commercial entities. Skylight
Publishing and the authors have no affiliation with and disclaim any sponsorship or endorsement by any of these
products’ manufacturers or trademarks’ owners.

1 2 3 4 5 6 7 23 22 21 20 19

Printed in the United States of America

Contents

Chapter 1. An Introduction to Computers and Coding in Python 5

Chapter 2. Variables and Arithmetic 6

Chapter 3. Sets and Functions 7

Chapter 4. Algorithms and while and for Loops 10

Chapter 5. Strings, Lists, Dictionaries, and Files 12

Chapter 6. Number Systems 14

Chapter 7. Boolean Algebra and if-else Statements 16

Chapter 8. Digital Circuits and Bitwise Operators 18

Chapter 9. Turtle Graphics 20

Chapter 10. Sequences and Sums 20

Chapter 11. Parity, Invariants, and Finite Strategy Games 24

Chapter 12. Counting 28

Chapter 13. Probabilities 30

Chapter 14. Vectors and Matrices 33

Chapter 15. Polynomials 36

Chapter 16. Recurrence Relations and Recursion 38

Chapter 17. Graphs 40

Chapter 18. Number Theory and Cryptology 47

1 An Introduction to Computers
and Coding in Python

Section 1.2

2. D. RAM stands for Random Access Memory; its bytes can be addressed in random order.

3.
30

20

120 2
240

512 2






5. There are 95 printable ASCII characters, so the 256 possible arrangements of the bits in one byte are

sufficient. , so 7 bits suffices. 72 128

6. This segment of code computes the sum of all the numbers from 1 to 6. AX contains 0007, since it

increases by 1 until it is greater than 6. BX contains the sum, 0015. This number represents 21 in
the hexadecimal number system; 15 hex is 1 16 5 21   .

Section 1.3

1. Redundancy is less than optimal representation or transmission of information, which makes it

possible to interpret a message and correct errors even when the message is garbled.

5. The + operator, when applied to two strings, concatenates them, that is, combines them into one

string.

7. 9-8*2+6 gives -1, because multiplication is applied before addition and subtraction.

(5-1)*(1+2)**3 gives 108 because expressions in parentheses are evaluated first, and power is
applied before multiplication. Thus (5-1)*(1+2)**3 = 34 3 . The precedence of operators is
parentheses, then **, then * and / from left to right, then + and - from left to right.

8. m%n returns the remainder when m is divided by n. % is applied before + and -; it has the same rank

as * and /.

Section 1.4

3. C

6. A

5

6 CHAPTER 2 ~ VARIABLES AND ARITHMETIC

2 Variables and Arithmetic
Section 2.2

3. (a), (c), (e)

4. def, for, in, return

6.

One is better than
one; two is better than one

\n in the string is an escape character that means newline.

9. The line return n**3 needs to be moved one space to the left for consistent indentation.

Section 2.3

1.

>>> r = 5
>>> pi = 3.14159
>>> area = pi * r**2 # or: area = pi * r * r

3. name, d7, first_name, lastName, Amt, and LBS_IN_KG are valid names for variables. name, d7,

first_name and LBS_IN_KG are common Python style. lastName style, often called “lower
camel case,” is more commonly used in Java than in Python; Python’s style with underscores is
called “snake_case.” Amt is not a good style for a variable, because it starts with a capital letter.
But all caps in LBS_IN_KG is fine because it is a universal constant.

6.

5
3

Notice that a = a+b sets a to 5.

7.

def greeting():
 """Ask the user for their name and print a "Welcome to Python" greeting.
 """
 name = input('What is your name? ')
 print('Hello, ' + name + '. Welcome to Python!')

Section 2.4

2.

(x - 2)**3 + 3*x

 CHAPTER 3 ~ SETS AND FUNCTIONS 7

5.
y = x*x
y = y*y

7. (b) The function returns None. To verify this, write

print(triangle('*'))

3 Sets and Functions

Section 3.2

1. 4 subsets:  , {a}, {b}, {a, b}

3. ; :{1, 2, 3, 4, 5} {11,12,13,14,15}f  () 10f x x  .

6. . In other words, f(n) is the

remainder when n is divided by 3, as in n%3 in Python.

...; (3) 0; (2) 1; (1) 2; (0) 0; (1) 1; (2) 2; (3) 0;...f f f f f f f         

7. 27:

x 1 2 3 x 1 2 3 x 1 2 3

f(x) a a a f(x) a a b f(x) a a c

x 1 2 3 x 1 2 3 x 1 2 3
f(x) a b a f(x) a b b f(x) a b c

x 1 2 3 x 1 2 3 x 1 2 3

f(x) a c a f(x) a b b f(x) a b c

x 1 2 3 x 1 2 3
f(x) b a a f(x) b a b And so on...

9. ()f P  distance from the center of the circle to P.

11.

9 5

A set cannot include duplicate values; a list can.

13.

def mex(s):
 """Calculate the mex (minimum excludant) of the set s
 of non-negative integers.
 """
 n = 0
 while n in s:
 n += 1
 return n

8 CHAPTER 3 ~ SETS AND FUNCTIONS

Section 3.3

1. Domain:  2 ; range:  0 .

3. Domain: 1 1x   ; range: 0 1y 

4. The domain has 900 elements; the range has 27 elements (1 through 27).

7. Two: , ,A B B C C A   and , ,A C C B B A  

9.  (1) (0) 1f g f  ;  (1) (1) 2g f g   

Section 3.4

1.

def concat_strings(s1, s2):
 return s1 + ' ' + s2

3.

def right_justify(s, w):
 """Return s padded with spaces on the left."""
 return (w - len(s))*' ' + s

>>> right_justify('123', 5)
' 123'
>>> right_justify(5, '123')
TypeError: object of type 'int' has no len()
>>> right_justify('123')
TypeError: right_justify() missing 1 required positional argument: 'w'
>>> right_justify('12345', 3)
'12345'

5.

**
*

2

8.

len(0) Exception
len('0') Returns 1
len('''0''') Returns 1
len('''''') Returns 0
len([0]) Returns 1
len([]) Returns 0
len((0, 1)) Returns 2
len(range(0, 1)) Returns 1

 CHAPTER 3 ~ SETS AND FUNCTIONS 9

Section 3.5

2.

>>> a
1
>>> b
2

swap(x, y) swaps copies of the arguments passed to it; the original arguments remain unchanged.

3. (a)

from math import sqrt

def solve_quadratic(a, b, c):
 """Return the roots of the equation ax^2+bx+c=0."""
 d = sqrt(b*b - 4*a*c)
 return (-b - d)/(2*a), (-b + d)/(2*a)

Section 3.6

1. 0 and n-1.

3.

def sum_digits(n):
 """Return the sum of the digits in n."""
 return sum(int(d) for d in str(n))

7.

[1, 2, 3, 4]

10 CHAPTER 4 ~ ALGORITHMS AND while AND for LOOPS

4 Algorithms and while and for Loops
Section 4.2

2.

 Input: n
 k ← 1
 sum ← 0
 while k ≤ n:
 sum ← sum + k
 k ← k + 1
 Output: sum

3.

 Input: m, n
 quotient ← 0
 while m ≥ n:
 m ← m - n
 quotient ← quotient + 1
 remainder ← m
 Output: quotient, remainder

Section 4.3

2.

def sum_alt_reciprocals(n):
 """Return 1 - 1/3 + 1/5 - ... up to 1/n."""
 k = 1
 sign = 1
 _sum = 0
 while k <= n:
 _sum += sign/k
 k += 2
 sign = -sign
 return _sum

from math import pi

print('pi =', pi)
for n in (1000, 10000, 100000):
 s = 4*sum_alt_reciprocals(n)
 print('n = {0:7d}: 4*sum = {1:15.13f} diff = {2:15.13f}'.format(n,
 s, abs(pi - s)))

3.

n_max = int(input('Enter a positive odd integer: '))
sum_n = 0
for n in range(1, n_max+1, 2):
 sum_n += n
 print(n, sum_n)

 CHAPTER 4 ~ ALGORITHMS AND while AND for LOOPS 11

6.
n_max = -1
while n_max <= 0:
 s = input('Enter a positive integer: ')
 try:
 n_max = int(s)
 except ValueError:
 print('Invalid input')

print() # print a blank line

n = 1
sum1n = 0
sum1n2 = 0
while n <= n_max:
 sum1n += n
 sum1n2 += n*n
 print('{0:3d} {1:6d} {2:6d} {3:6g}'.format(n, sum1n, sum1n2, \
 3*sum1n2//sum1n))
 n += 1

7.

def print_square(n):
 print(' ' + (n-2)*'-')
 for k in range(1, n-1):
 print('|' + (n-2)*' ' + '|')
 print(' ' + (n-2)*'-')

or

def print_square(n):
 print(' ' + (n-2)*'-' + '\n' + (n-2)*('|' + (n-2)*' ' + '|' + '\n')
 + ' ' + (n-2)*'-')

8.

def my_pow(x, n):
 p = 1
 while n > 0:
 p *= x
 n -= 1
 return p

12 CHAPTER 5 ~ STRINGS, LISTS, DICTIONARIES, AND FILES

5 Strings, Lists, Dictionaries, and Files

Section 5.2

2.

def is_palindrome(word):
 return word == word[::-1]

Section 5.3

1.

def to_swedish(date):
 slash1 = date.find('/')
 slash2 = date.find('/', slash1+1)
 return (date[slash2+1:] + '-' +
 date[:slash1].rjust(2, '0') + '-' +
 date[slash1+1:slash2].rjust(2, '0'))

3.

def startswith(s, sub):
 return s[:len(sub)] == sub

def endswith(s, sub):
 if len(sub) == 0:
 return True
 return s[-len(sub):] == sub

4.

def get_digits(s):
 digits = ''
 for c in s:
 if c.isdigit():
 digits += c
 return digits

7.

def is_valid_amt(s):
 s = s.strip()
 dot = s.find('.')
 if dot == -1:
 return len(s) > 0 and s.isdigit()
 if dot == 0 or dot != len(s) - 3:
 return False
 return s[0:dot].isdigit() and s[dot+1:].isdigit()

8.

def remove_tag(s):
 start = s.find('<')
 if start == -1:
 return s
 end = s.find('>', start + 1)
 if end == -1:
 return s
 return s[:start] + s[end+1:]

 CHAPTER 5 ~ STRINGS, LISTS, DICTIONARIES, AND FILES 13

Section 5.4

1.

def reverse(lst):
 i = 0
 j = len(lst) - 1
 while i < j:
 lst[i], lst[j] = lst[j], lst[i]
 i += 1
 j -= 1

4.

newnums = [x + 1 for x in nums]

7. The first time through the for loop, x > a[i] is executed twice; it is true once and false once. The

next time through, the condition is true 3 times and false once, because b[0] has been inserted into
a. The next time, it’s true 5 times and false once. This pattern continues until the final time through
the loop. Therefore, the total number of times the comparison is executed is

2 200
2 4 6 ... 196 198 199 100 1 10099

2

           
 

.

def merge(a, b):
 i = 0 # Moved outside the while loop: no need to start
 # searching from the beginning of a because b is sorted
 for x in b:
 while i < len(a) and x > a[i]:
 i += 1
 a.insert(i, x)
 i += 1 # Advance to the next position in a

This code executes x > a[i] 100 2 1 199   times.

Section 5.5

2.

alligator = {'Title' : 'Alligator',
 'Band' : 'The Nationals',
 'Duration' : 4 * 60 + 5}

3.

def reverse_dictionary(d):
 new_d = {}
 for k in d.keys():
 new_d[d[k]] = k
 return new_d

14 CHAPTER 6 ~ NUMBER SYSTEMS

Section 5.6

1.

pathname = input('File name: ').strip()
f = open(pathname)
line_number = 1
for line in f:
 print('{0:4d} {1:s}'.format(line_number, line), end='')
 count += 1
f.close()

3.

pathname = input('File name: ')
s = input('Target string: ')
f = open(pathname)
for line in f:
 if s in line:
 print(line, end='')
f.close()

6 Number Systems

Section 6.2

1. 18 is the only two-digit number that is equal to

twice the sum of its digits.

10 2() 8 1, 8a b a b a b a b        

10 7() 3 6 2a b a b a b a b        21, 42, 63, 84 are the two-digit numbers that are equal

to seven times the sum of their digits.

3. The number in each row has the form 100 10a b c  . In the nine numbers in all rows, a, b, and c

run through all values 1 through 9, so the sum of these numbers is 100 10s s s  , where
. Therefore, the sum of the numbers in each column is

.
1 2 3 4 5 6 7 8 9 4s          

45(100 10 1) 45 111 4995    
5

4. 10 315 9 2 3 120   

10 324 2 9 2 3 220    

6. 2 110011100 128 16 8 4 156     0

9.

 201 201
+ 12 - 12
 --- ---
 220 112

 CHAPTER 6 ~ NUMBER SYSTEMS 15

10. The number is even if and only if the sum of its digits in base 3 is even, because

    1
1 1 0 1 13 3 ... 3 ...n n

n n n na a a a a a a a
            0 

   1 1 1
21

222...2 22...2 ... 2 2 111...1 11...1 ...n n n n
nn

a a a a a 


             1a

6

2

2

So the sum of the digits of an even number must be divisible by 2, which means the number of 1s
among the digits must be even.

Section 6.3

1. and . 7

21111111 2 1 127   152 1 32767 

3. 2 1010 1110 1011 2EB

5. 10 24 100

2 101011100 4 101110000  (add two zeros on the right).

2 101011100 / 4 10111 (remove two zeros on the right).

Section 6.4

1. 16 16FFFFFACE 532 1330   

2. Because a float in Python has “only” 17 significant digits, the least significant digits in

1000000000.0000000001 are lost.

4.

>>> n = 1
>>> while int((17.0 / n) * n) == 17.0:
 n += 1
>>>
>>> n
4211

Section 6.5

1. There are 6 pairs of integers (n, m) such that 5 4 3 2 1 21      0 7m n   .

def pythagoreanTriple(m, n):
 return (n*n - m*m, 2*m*n, n*n + m*m)

for m in range(1, 7):
 for n in range(m+1, 8):
 print(pythagoreanTriple(m, n))

16 CHAPTER 7 ~ BOOLEAN ALGEBRA

7 Boolean Algebra

Section 7.2

2. I did my homework and I went to see a movie.

3. Here or there

6.

P Q R Q or R P and (Q or R)
F F F F F
F F T T F
F T F T F
F T T T F
T F F F F
T F T T T
T T F T T
T T T T T

8. (P and (not Q)) or ((not P) and Q)

Section 7.3

2.

0 -4 -3 -2 -1 1 2 3 4

4.

2

1

 CHAPTER 7 ~ BOOLEAN ALGEBRA 17

5.

1

1

1

1

2 1

2

2

x

x

x

x

x

6. 34% -12% = 22% were only obese

14% - 12% = 2% had only diabetes
12% had diabetes and were obese
22% + 2% + 12% = 36% were obese, had diabetes, or were both obese and had diabetes.

Another way to look at it: . This is an example of the inclusion-exclusion principle. 34 14 12 36  

7. If and are the truth sets of p and q, respectively, then pA qA p q if and only if . p qA A

10. s1 ^ s2 = (s1 | s2) - (s1 & s2)

Section 7.4

1.

n > 0 and n % 2 == 0

3. Only (c)

4.

def num_days(month):
 if (month == 'January' or month == 'March' or month == 'May'
 month == 'July' or month == 'August' or month == 'October' or
 month == 'December'):
 return 31
 elif month == 'February':
 return 28
 elif (month == 'April' or month == 'June' or
 month == 'September' or month == 'November'):
 return 30

or

def num_days(month):
 if month in ('January', 'March', 'May', 'July', 'August'
 'October', 'December'):
 return 31
 elif month in ('April', 'June', 'September', 'November'):
 return 30
 elif month == 'February':
 return 28

5.

def is_leap_year(year):
 return year % 4 == 0 and (year % 100 != 0 or year % 400 == 0)

18 CHAPTER 8 ~ DIGITAL CIRCUITS AND BITWISE OPERATORS

7.
('+' in s and '-' not in s) or ('-' in s and '+' not in s)

8.

def is_hex_digit(d):
 """ Return True if d is a single character and d
 is a hex digit: '0' - '9', 'a' - 'f' or 'A' - 'F';
 otherwise return False.
 """
 return len(d) == 1 and d in '0123456789abcdefABCDEF'

11.

def is_earlier_than(date1, date2):
 month1, day1, year1 = date1
 month2, day2, year2 = date2
 return (year1 < year2 or
 (year1 == year2 and month1 < month2) or
 (year1 == year2 and month1 == month2 and day1 < day2))

Another solution:

def is_earlier(date1, date2):
 month1, day1, year1 = date1
 month2, day2, year2 = date2
 if year1 < year2:
 return True
 elif year1 > year2:
 return False
 if month1 < month2:
 return True
 elif month1 > month2:
 return False
 return day1 < day2

8 Digital Circuits and Bitwise Operators
Section 8.2

1.

3.

 +

-

 CHAPTER 8 ~ DIGITAL CIRCUITS AND BITWISE OPERATORS 19

5. AND

7.

 A
B
C

8.

 A
B

9.

 A
B

Section 8.3

1. a & b = 01000110

a | b = 11110111
a ^ b = 10110001
a << 1 = 11001110
b >> 2 = 00110101

3.

if (status_reg & 0x0008) != 0 and (status_reg & 0x0020) != 0
 ...

4.

def divisible_by8(n):
 """Return True if n is divisible by 8;
 otherwise return false.
 """

 return n & 0x07 == 0

5.

pattern ^= 0x00ffffff

7. byte & 0x2A != 0

20 CHAPTER 9 ~ TURTLE GRAPHICS

9.
def rev_bits(n):
 x = n & 0xC0000000
 bit1 = 1
 bit2 = 0x20000000
 for k in range(29, 0, -2):
 x |= (n & bit1) << k
 x |= (n & bit2) >> k
 bit1 <<= 1
 bit2 >>= 1
 return x

12. The & and | operators can be applied to Boolean expressions, but they do not use short-circuit

evaluation. Try, for example,

>>> x = 0
>>> x != 0 & 1/x > 1
ZeroDivisionError: division by zero

9 Turtle Graphics

Section 9.2

See PY\PythonCode\TurtleExercises.py.

Section 9.3

See PY\PythonCode\TurtleExercises.py.

Section 9.4

1. 242 16,777,216

3. 1920/1200 = 1.6; the golden ratio is approximately 1.618. Pretty close.

5 See PY\PythonCode\TurtleExercises.py.

10 Sequences and Sums

Section 10.2

2.
1

(1na
n n


)

6

4. 7 1 12 16 21 3 18 3 11 3a a d d a a d          

 CHAPTER 10 ~ SEQUENCES AND SUMS 21

1 d7. ; . Adding these two equalities together, we get 1n na a d  1n n n na a d a a     

1 1
1 12 n na a 

2
n n

n n

a a
a a  

 


  .

9. Yes; for example, 0, 0, 0, ... or 1, 1, 1, ... or any other sequence in which all terms have the same

value.

10. 1

Section 10.3

3. The sum of the first n odd numbers is   2

1

1 (2 1) 2
2 1

2 2

n

k

n n
k n n



n
 

    .

6. 2 1... n

ns a ar ar ar     

2 3 ... n n
n nrs ar ar ar ar rs s ar a         n

1

1

n

n

r
s a

r





.

If
1

2
a  and

1

2
r  , then

1 1
1 11 12 2 1

1 12 21
2 2

n n

n n
s

 
     



1

2

2

.

7.
6

1

10 6543210d

d

d


 

9. , so (1)(2) (1) (1) 3 (1) 3 3k k k k k k k k k k         2 (1)(2) (1) (1)

3

k k k k k k
k k

    
  

 2

1

(1) 2(2) 3(1)(2) (1)

3 2 6

n

k

n n nn n n n n
k



    
   

(1)(2 1)

6

n n n 
.

Section 10.4

2.
1

1

100n

n

n





 diverges because
1 1

100 100

n

n


 .

4.
1

0

1

1

nn
k

k

r
r

r








 . The series converges to
1

1 r
 if and only if 1r  , that is, . 1 1r  

5.
1 1 1

1 ...
3 5 2 1n

    


... diverges. Indeed,

1 1 1 1 1 1 1 1 1 1 1
1 1

3 5 2 1 2 4 6 2 2 2 3n n
                    n

, and the harmonic

series diverges.

22 CHAPTER 10 ~ SEQUENCES AND SUMS

7.
3

1

1

n n




 converges because

3 2

1 1 1
0

(1)n n n n
  


, and we know that the telescopic series

1

(1n n)

converges.

8. Let be the perimeter of the snowflake after n iterations. Then nP 1

4 4

3 3

n

n nP P 
    
 

P , so the

perimeter of the snowflake increases without bound.

On the first iteration we add
1

3
9 3

A
A  to the area. On the second iteration we add

1 4
3 4

81 9 3

A
A    . On the third iteration we add

2
2

3

1 4
3 4

9 9

A
A

 
3

   
 

. And so on. So, after n

iterations, the area is
2 1

4 4 4
1 ...

3 9 9 9

n
A

A
            

     
 . As we know, the geometric series

2 1n
4 4 4

1
9 9 9

          
   

 converges to
1

4 51
9

9



. So, the area of the snowflake converges to

9 8

3 5 5

A
A   A . Thus the Koch Snowflake has an “infinite” perimeter and a finite area!

Section 10.5

1. is odd; is odd; is even. The Fibonacci sequence goes odd, odd, even, odd, odd,

even, ... because the sum of two odd numbers is even and the sum of an even and an odd number is
odd. Therefore, every third Fibonacci number is even.

1 1F  2 1F  3 2F 

999F is even; 1000F is odd.

4. There is one path from A and one path from B to . There is one path from A and there are two

paths from B to 2C . There are two paths from A and three paths from B to 3C . Let and

 be the number of paths from A to n and from B to nC , respectively. It looks like

1C

()AP n

()BP n C ()A nP n F

and 1()B nP n F  . Indeed, any path from A or from B to must go through either 1nC  or nC 2nC  , so

 and ()P n (A AP n 1) (2)AP n  () (P n P n 1) (P n 2)BB B    — Fibonacci numbers again!

 CHAPTER 10 ~ SEQUENCES AND SUMS 23

5. (a)
def fibonacci_list(n):
 """ Return a list fibs of length n+1 in which fibs[0] is 0
 and fibs[k] is the k-th Fibonacci number for 1 <= k <= n.
 """
 fibs = (n+1)*[0]
 fibs[1] = fibs[2] = 1
 for k in range(3, n+1):
 fibs[k] = fibs[k-1] + fibs[k-2]
 return fibs

 (c)

def fibonacci(n):
 """ Return the n-th Fibonacci number, where F(1) = F(2) = 1."""
 f1 = f2 = 1
 for k in range(3, n+1):
 f1, f2 = f2, f1 + f2
 return f2

This code is also included in PY\PythonCode\Fibonacci.py.

6.

f = fibonacci_list(10)
s = 0
for n in range(1, 10, 2):
 s += f[n]
 print(n, s)

The output is:

1 1
3 3
5 8
7 21
9 55

This code is also included in PY\PythonCode\Fibonacci.py.

nIt looks like 1 3 2 1 2... nF F F    

1 3 2 1 2 1... n nF F F F     
F

)

. Indeed, this is true for n = 1, 2, 3, 4, 5. Suppose it is true for

n. Then — so it is also true for n+1. It must

be true for all n.
2 2 1 2 2 2(1n n n nF F F F   

7.  1 1

25 5

n n
n n

n nF F
      

5
 .

9. 2 2

2 1 1n n nF F F  

2 2 1 2n n

 and 2 2
2 1 1n n nF F F   

2 2
1 1 ()n n n n

2 2 2
1 1 1 2n n n n n 1F F F   F F F F     F F F F     , Q.E.D.

24 CHAPTER 11 ~ PARITY, INVARIANTS, AND FINITE STRATEGY GAMES

10.
x = 1
for n in range(1, 101):
 print(n, x)
 x = 1 + 1/x

This sequence converges to the golden ratio.

11 Parity, Invariants, and Finite
Strategy Games

Section 11.2

2. 27 = 128. The first seven bits can be anything; the eighth bit is determined by the first seven.

4. The 0 bit in the third row and fourth column (because the parities of this row and this column are

odd).

5.

def correct_error(t):
 """Correct a parity error in one bit in a rectangular table."""
 n_rows, n_cols = len(t), len(t[0])
 error_row = error_col = -1

 # Find the index of the row with error:
 for r in range(n_rows):
 if t[r].count('1') % 2 == 1:
 error_row = r

 if error_row == -1:
 return

 # Find the index of the column with error:
 for c in range(n_cols):
 count = 0
 for r in range(n_rows):
 count += int(t[r][c])
 if count % 2 != 0:
 error_col = c

 # Correct the error:
 s = t[error_row]
 d = '0' if s[error_col] == '1' else '1'
 t[error_row] = s[0:error_col] + d + s[error_col+1:]

t = ['011011', '100010', '101001', '010100']
print(t)
correct_error(t)
print(t)

6. The last column and the last row of the table are determined by the first three rows and the first five

columns. The number of tables with even parity is equal to the number of tables with odd parity —
both numbers are equal to 152 .

 CHAPTER 11 ~ PARITY, INVARIANTS, AND FINITE STRATEGY GAMES 25

7.
def is_valid_UPC(s):
 """ Return True if s represents a valid UPC string of 12 digits."""
 c_sum = 3*sum(int(d) for d in s[0::2]) + sum(int(d) for d in s[1::2])
 return c_sum % 10 == 0

print(is_valid_UPC('072043000187'))
print(is_valid_UPC('072043000188'))
print(is_valid_UPC('072040300187'))

This code is also included in PY\PythonCode\Checksums.py.

8. (a) It does. The numbers 3ꞏd, for d from 0 to 9, all end with different digits, so if you change one

digit in the UPC, the checksum will no longer be 0.

 (b) If we were to multiply by 2, then 5 could be substituted for 0, and vice-versa, and the
checksum would remain unchanged.

 (c) It does not. We can transpose any 2 digits whose difference is 5, such as 1 and 6.

. 3 1 6 3 6 1 mod10    

Section 11.3

1. The difference between the number of uncovered black squares and the number of uncovered white

squares remains constant, because each domino always covers one black square and one white
square. At the beginning the difference is 2, so it can’t be 0 at the end.

3. It is an open interval on the diagonal line
2

p
x y  :

x

y

O

C
B

A

2

p

26 CHAPTER 11 ~ PARITY, INVARIANTS, AND FINITE STRATEGY GAMES

5. As we have seen in question 4, the area of the rectangle is constant when its vertex C lies on the

hyperbola, such as
1

y
x

 . The perimeter is constant when C is on a diagonal line
2

p
x y  . For

the smallest perimeter we need to find the diagonal line that is closest to the origin, yet intersects
with, or at least touches, the hyperbola. As we shift the diagonal line parallel to itself away from the
origin, it eventually touches the hyperbola at (1, 1). That point gives the rectangle with the smallest
perimeter; that rectangle is a square.

x

y

O

C

6. The result does not depend at all on the order of pairs chosen. To see this, replace each plus with +1

and each minus with -1. Then the described operation is equivalent to replacing a pair of numbers
with their product. The end result is the product of the original numbers.

9. For example, in

def my_pow(x, n):
 k = 0
 p = 1
 while k < n:
 p *= x
 k += 1
 return p

the loop invariant is kp x .

Section 11.4

1. The number of stones remaining in the pile is evenly divisible by 5.

3.

The first player can win by moving to a “plus” square on the first move.

 CHAPTER 11 ~ PARITY, INVARIANTS, AND FINITE STRATEGY GAMES 27

4. Initially there are two piles of stones with equal numbers of stones in them. A player must either
take one stone from either pile, or take two stones, one from each pile. The safe positions are the
ones in which the number of remaining stones in each pile is even.

7.

The correct first move is to go to the last position shown above.

8.

3: 011
4: 100
5: 101
6: 110

The number of 1s in the leftmost column is odd, so this is not a safe position.

9.
6: 0110
8: 1000
11: 1011

We need to flip the bits in the second and fourth columns in the ‘6’ pile:

3: 0011
8: 1000
11: 1011

 In other words, we need to take three stones from the ‘6’ pile.

12. Let’s call every other stack “white” and the rest “black.” Suppose you go first. Note that before

your first move and before each of your moves, the colors of the stacks on the two ends are different.
After your move these colors are the same, and your opponent is forced to take one of them. At the
outset, count the total number of coins in the white stacks and compare it to the total number of coins
in the black stacks. Pick the color that has more coins in it and stick with this color: always take the
stack of that color, forcing your opponent to take a stack of the opposite color. This strategy works
for any even number of stacks.

28 CHAPTER 12 ~ COUNTING

12 Counting

Section 12.2

1. 10ꞏ10ꞏ10 = 1000

3. 21ꞏ5ꞏ21 = 2205

7. 8 8 8 242 2 2 = 2 = 16777216 

8. . First choose a peg for the largest disk, then for the second largest, and so on. 53 243

Section 12.3

1. 9ꞏ9ꞏ8 = 648

4. 8ꞏ7ꞏ6ꞏ5ꞏ4ꞏ3 = 20160

5. The same answer as in Question 4, only this time you “seat” chairs on people, not people on chairs.

7.
1

9ꞏ8 ꞏ 8ꞏ7ꞏ6ꞏ5ꞏ4ꞏ3 725760 mins 12096 hours
2
   = 504 days at 24 hours/day.

9ꞏ8 for M, S;
1

2
 for solving, on average, after half of the trials.

8. BINARY:
6!

2
360

 seconds

DECIMAL:
7!

14
360

 seconds

CONVERSATION:
12!

1330560
360

 seconds = 369.6 hours = 15.4 days

Section 12.4

1.
12 11

66
2




4.
4!

12
2
 . Seat the hosts first; 4! ways to seat the guests, divided by 2 for mirror arrangements.

5.
6!

30
6 4




. 6! ways to color a cube in a fixed position divided by 24 ways to position the cube: 6

ways to stand the cube on one side and 4 ways to rotate the cube on that side.

 CHAPTER 12 ~ COUNTING 29

6. 6ꞏ12 for the first flight; 5ꞏ12 for the second flight; 4ꞏ12 for the third flight. But the order of flights
does not matter, so we have to divide the previous result by the number of permutations of 3. The
answer is 6ꞏ12ꞏ5ꞏ12ꞏ4ꞏ12/3! = 34560.

7. 8! = 40320. There must be a rook in each row; 8 ways to choose a rook’s position in the first row,

times 7 ways to choose a rook’s position in the second row, and so on.

Section 12.5

1. 10

3.
40 40

658008
5 35

       
   

5.
9 6

1680
3 3
       
   

7. 13 ways to choose the first rank; 4 ways to choose 3 cards of that rank; 12 ways to choose the second

rank; 6 ways to choose 2 cards of that rank. 13ꞏ4ꞏ12ꞏ6 = 3744.

9. The number of different ways to reshuffle is
6

20
3
   
 

. The number of different truth tables is

. So not all arrangements result in different truth tables. 42 16

Section 12.6

1. 12 6 2 20  

3. 34

 n m
 2 none
 3 2
 4 3
 5 2, 3, 4
 6 5
 7 2, 3, 4, 5, 6
 8 3, 5, 7
 9 2, 4, 5, 7, 8
 10 3, 7, 9
 11 2, 3, 4, 5, 6, 7, 8, 9, 10
 12 5, 7, 11

30 CHAPTER 13 ~ PROBABILITIES

6. 3a: (7+7+7)
4

4
3
   
 

 2a+b:6+6+9; 8+8+5; 9+9+3
4 4

3 72
2 1
         
   

a + b + c: 2+ 9+10; 3+8+10; 4+7+10; 4+8+9; 5+6+10; 5+7+9; 6+7+8
4 4 4

7 448
1 1 1
              
     

4 + 72 + 448 = 524

7. 3 39 10 8 9 3168   

9. The total number of paths is . The number of paths that go through C is .

The number of paths that do not go through C is

6
20

3
   
 

4 2
12

2 1
       
   

20 12 8  .

10. 5 5 5 5 4 4 4 462 36 52 26 62 36 52 26 493586080       

13 Probabilities

Section 13.2

1.
1

5

3.
1 1
36 1947792
6


 
 
 

5.
1

38
 and

18

38

Section 13.3

1.
13 48 1

52 4165
5




 
 
 

2.
4 1

52 649740
5


 
 
 

 CHAPTER 13 ~ PROBABILITIES 31

3. 7

70
10

1.122 10
80
20



 
 
   
 
 
 

5.
52 51 50 52 48 44 73

52 51 50 425

    


 

7.

16 15 14

16

16 16
5 5 5

1 2count(0) count(1) count(2)
0.48679

total # of arrangements 6

               

8. All different ranks — 10 possibilities:

2+8+11; 2+9+10; 3+7+11; 3+8+10; 4+6+11; 4+7+10; 4+8+9; 5+6+10; 5+7+9; 6+7+8
Two of the same rank, different third — 6 possibilities:
 5+5+11; 6+6+9; 8+8+5; 9+9+3; 10+10+1; 1+11+9
All three the same — 1 possibility: 7+7+7
This results in

4 4 4 4 4 4
10 6 1

1 1 1 2 1 3 788
52 22100
3

                          
           

 
 
 

Section 13.4

1.
1 1 1 1

6 6 6 216
  

3.
5 5 5 125

6 6 6 216
   and

125 91
1

216 216
 

5.
3 4 3

10 10 25
 

6. Win after 1 rally:
2

3

Win after 1 or 3 rallies:
2 1 2 2 2 2 22

1
3 3 3 3 3 9 27

       
 

Win after 1, 3, or 5 rallies:
2

2 1 2 2 1 2 1 2 2 2 2 2 206
1

3 3 3 3 3 3 3 3 3 3 9 9 243

                  

Win eventually:
2

2 2 2 2 1
1 ...

23 9 9 3 1
9

             

6

7

32 CHAPTER 13 ~ PROBABILITIES

8.
2 2 2

1 5 20 426

30 30 30 900
            
     

Section 13.5

1.

from random import choice, shuffle, sample

def random_hand():
 """Generate a random hand of 5 cards."""
 deck = [(s, r) for s in 'SHDC' for r in range(1, 14)]
 hand = [];
 while len(hand) < 5:
 card = choice(deck)
 hand.append(card)
 deck.remove(card)
 return hand

Or, shorter:

def random_hand():
 """Generate a random hand of 5 cards."""
 deck = [(s, r) for s in 'SHDC' for r in range(1, 14)]
 shuffle(deck);
 return deck[:5]

Or, even shorter:

def random_hand():
 """Generate a random hand of 5 cards."""
 deck = [(s, r) for s in 'SHDC' for r in range(1, 14)]
 return sample(deck, 5)

2.
3

5 125

26 17576
   
 

8.

from random import random

def positive_choice(s):
 """Return a positive integer randomly chosen from s."""
 k = 0
 r = None
 for x in s:
 if x > 0:
 k += 1
 if random() < 1 / k:
 r = x
 return r

s = [-1, 1, 2, 0, 3, -2, 4, 5, -6]
counts = (max(s) + 1)*[0]
n = 10000
for t in range(n):
 counts[positive_choice(s)] += 1
print(counts)

This code is also included in PY\PythonCode\RandomQuestions.py.

 CHAPTER 14 ~ VECTORS AND MATRICES 33

14 Vectors and Matrices

Section 14.2

1.

 

2 2

2 2

2 2

(4, 3) 4 3 25 5

(2, 2) 2 2 8 2 2

(2,1) 2 1 5

u u

v v

w w

    

    

     

 

 

 

3. (a) 2 25 12 169 13   (b) 2 21 7 50 5 2   (c)  2 23 4 25 5   

(d) 2 2 23 4 12 169 13   

4. (3, 4); 5u u   
 

 unit vector with the same direction is
3 4

,
5 5

u

u
   
 


 .

5. (a) (2, 2) (2, 2) (4, 0) (0, 4)u v u v u v      

     
     

(b) (2, 2) (2,1) (4, 3) (0,1)u v u v u v     
    

(c) (0, 2) (3, 2) (3, 0) (3, 4)u v u v u v        


     
(d) (2, 0) (3, 0) (5, 0) (1, 0)u v u v u v      

     
(e) (0, 2) (0, 3) (0, 1) (0, 5)u v u v u v       

     
(f) (0, 2) (0, 2) (0, 0) (0, 4)u v u v u v      

7. Choose the point on the line (1, 2) 2y x and the point (on the line 2,1)
2

x
y  . If

, then  ,1v 


(1, 2), 2u 
 4

4, 5 cos  0.6435
5

u v u v        
   

 radians.

8. and ((5,1) 5, 1)

13. Take . Then (, ,) and (1,1,1)u x y z v 
 

1u v x y z    
 

,
2 2 2u x y z2  


and
2

3v 


.

2 22 2 2 2 2 1
() 1 3()

3
u v u v x y z x y z          
    2 2 , Q.E.D.

34 CHAPTER 14 ~ VECTORS AND MATRICES

Section 14.3

2.

def display_matrix(m):
 """Print out m with aligned columns."""
 for row in m:
 for x in row:
 print('{0:4d}'.format(x), end = '')
 print()
 print()

m = [[1, 2, 3],
 [11, 21, 31],
 [21, 22, 33]]
display_matrix(m)

Output:

 1 2 3
 11 21 31
 21 22 33

This code is also included in PY\PythonCode\VectorsAndMatrices.py.

5.

def matrix_dot_vector(A, u):
 """Return the vector Av."""
 n = len(u)
 return [sum(A[r][c]*u[c] for c in range(n)) for r in range(n)]

or

def matrix_dot_vector(A, u):
 """Return the vector Av."""
 return [dot_product(row, u) for row in A]

A = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

u = (100, 10, 1)
v = matrix_dot_vector(A, u)
print(v)

Output:

[123, 456, 789]

This code is also included in PY\PythonCode\VectorsAndMatrices.py.

 CHAPTER 14 ~ VECTORS AND MATRICES 35

8.
cos sin cos sin

sin cos sin cos

x x y

y x y

   
  

    
        





2 2

   
   
   

         

2 2

2 22 2

2 22 2

22 2 2 22 2

cos sin sin cos

cos 2 sin cos sin

sin 2 sin cos cos

sin cos sin cos

x y x y

x xy y

x xy y

x y x

   

   

   

   

   

  

  

    y

Q.E.D.

11.

def determinant3(a):
 return (a[0][0]*a[1][1]*a[2][2] +
 a[0][1]*a[1][2]*a[2][0] +
 a[1][0]*a[2][1]*a[0][2] -
 a[0][2]*a[1][1]*a[2][0] -
 a[0][1]*a[1][0]*a[2][2] -
 a[2][1]*a[1][2]*a[0][0])

def copy_matrix(a):
 """Return a copy of a."""
 return [a[0][:], a[1][:], a[2][:]]

def solve3(a, c):
 """ Solve the system of three linear equations ax = c."""
 solution = 3*[None]
 d = determinant3(a)
 if d == 0:
 return solution
 for i in range(3):
 b = copy_matrix(a)
 b[0][i] = c[0]
 b[1][i] = c[1]
 b[2][i] = c[2]
 solution[i] = determinant3(b) / d
 return solution

a = [[2, 3, 1],
 [4, 6, 5],
 [7, 9, 8]]

c = [42, 96, 150]
print('determinant = ', determinant3(a))
print(solve3(a, c))

Output:

determinant = 9
[4.0, 10.0, 4.0]

This code is also included in PY\PythonCode\VectorsAndMatrices.py.

36 CHAPTER 15 ~ POLYNOMIALS

15 Polynomials

Section 15.2

1.    4 2 3 2 4 3 23 1 8 4x x x x x x x         9

4.

def negate(p):
 """Return -p for a polynomial p."""
 return [-a for a in p]

p = [1 ,-2, 3]
print(negate(p))

Output:

[-1, 2, -3]

This code is also included in PY\PythonCode\Polynomials.py.

8.

y = sin x

3

6

x
y x 

3 5

6 120

x x
y x  

3

6

x
x  approximates sin x quite well for 1 1x   ;

3 5

6 120

x x
x   approximates sin x very well for

. 2 2x  

Section 15.3

1.

def reduce(p):
 """Divide p by the leading coefficient."""
 f = 1/p[0]
 result = [f*a for a in p]
 result[0] = 1
 return result

This code is also included in PY\PythonCode\Polynomials.py.

 CHAPTER 15 ~ POLYNOMIALS 37

4.
def multiply(p1, p2):
 """Return p1*p2."""
 n = len(p1) + len(p2) - 1
 result = n*[0]
 for i in range(len(p1)):
 for j in range(len(p2)):
 result[i+j] += p1[i] * p2[j]
 return result

This code is also included in PY\PythonCode\Polynomials.py.

7.

n = int(input('Enter a positive integer: '))
p = [1] # 1
x_plus_1 = [1, 1] # x + 1

while n > 0:
 p = multiply(p, x_plus_1)
 n -= 1

print(p)
print(sum(p))

For instance, if the user enters 4, the output is [1, 4, 6, 4, 1] 16.

This code is also included in PY\PythonCode\Polynomials.py.

10. 2 2()() ()x u x v x u v x uv x px q         
2 4

,
2

p p
u v

 


q
 and

2 4

2

p p q 
.

Section 15.4

2. For each element of the set, there are two possibilities: it is either in the subset or not. Therefore, the

number of possible subsets of a set of n elements is . 2n ... 2
0 1

nn n n
n

             
     

.

4.
0

2 (1 2)
n

k n

k

n
k

     
 

 3n

38 CHAPTER 16 ~ RECURRENCE RELATIONS AND RECURSION

7.
def pascal_triangle(n):
 """ Return the first n rows of Pascal's triangle in a list."""
 t = [[1]]
 row = [1]
 for k in range(1, n):
 row = [1] + [row[i] + row[i+1] for i in range(k-1)] + [1]
 t.append(row)
 return t

n = int(input('Enter a positive integer: '))
t = pascal_triangle(n)
for row in t:
 print(row)

This code is also included in PY\PythonCode\PascalTriangle.py.

8. When n = 1, . When n > 1,
2 2 2
1 0 2
           
     

2 2 1 2
1 2

n n n
n n n

                   
1

1





1

2 2 1 2 1
1 1

n n n
n n n

                  
2 2 2 1

1 1 2
n n

n n n
                   

2 2 2
1 1

n n n
n n n

                 

, Q.E.D.

2 1 2 1 2 1 2 1 2 1 2
1 1 1

n n n n n n n
n n n n n n

                                            

16 Recurrence Relations and Recursion

Section 16.2

1. 15

3.
2, if 1

()
2 (1), if

n
f n

f n n


    

4.
10, if 1

()
(1) 20, if

n
f n

1f n n


    

7.
6, if 3

()
(1), if

3

n
f n n

f n n
n


 

   
3

 CHAPTER 16 ~ RECURRENCE RELATIONS AND RECURSION 39

Section 16.3

1.

def factorial(n):
 """Return n-factorial for n >= 0."""
 if n == 0: # 0! is 1
 return 1
 return n * factorial(n - 1)

This code is also included in PY\PythonCode\Recursion.py.

3.

def eval_polynomial(p, x):
 """Return p(x)."""
 if len(p) == 1:
 return(p[0])
 return x*eval_polynomial(p[:-1], x) + p[-1]

print(eval_polynomial([1, 2, 3], 2))

This code is also included in PY\PythonCode\Recursion.py.

4. (a)

def print_digits(n):
 """Print a triangle made of digits."""
 print(n * str(n))
 if n > 1:
 print_digits(n - 1)

 (b)

def print_digits(n):
 """Print an inverted triangle made of digits."""
 if n > 1:
 printDigits(n - 1)
 print(n * str(n))

5. If the three pegs are numbered 1, 2, and 3, the sum of the numbers is 6, so knowing two pegs you

can find the number of the third by subtracting the total of the two known pegs from 6. Therefore,
spare_peg = 6 - from+peg - to_peg makes spare_peg equal to the number not used as
from_peg or to_peg.

6. The implicit base case is n == 1, when the program just moves one disk from from_peg to

to_peg.

8.

2 disks: 3 moves
3 disks: 7 moves

1
4 disks: 15 moves
n disks: moves 2n 

The “lifespan of the universe” is about 584,942,417,355 years.

40 CHAPTER 17 ~ GRAPHS

Section 16.4

1. Base Case: . 2

1 1 1f  

Induction Step: Suppose 2
nf n . Then 2 2

1 2 1 2 1 (1)n nf f n n n n         .

3. 12 (n nL L n   2)

Base Case: . 2 1
2 2 2L    0

Induction Step: 2
12 (2) 2[2 (1)]n

n nL L n n n
        2 1 12 2 2 2 2n nn n  n       .

4. Let nR be the number of regions into which n lines divide the plane. We will prove, using math

induction, that
(1)

1
2n

n n
R


  . This is true for 1n  , because 1

1 2
1 2

2
R


   . Suppose this is

true for any number of lines k < n (induction hypothesis). In particular, 1

(1)
1

2n

n n
R 


  . When

we add the n-th line, it is cut into n segments by the existing lines; each of these segments cuts an
existing region into two, adding one region. Therefore, 1n nR R  n  . Using this recurrence

relation and the induction hypothesis, we get
(1)n n

R n
  (1)

1 1
2 2n

n n 
    

  .

17 Graphs

Section 17.2

1. For example:

1

2

3 4
5

6 7

2.

 d

c

b a

4. (a) and (b) are simple graphs; (c) is a multigraph; (d) has a loop

 CHAPTER 17 ~ GRAPHS 41

5. (b)
12 11

66
2




Section 17.3

1. (a) Yes (b) No (c) Yes

2. Yes: 3, 4, 2, 5, 1A B C D E    

3. 11 different graphs, 6 of which are connected:

4. Only if the subgraph is equal to the whole graph, because the number of vertices and the number of

edges in two isomorphic graphs must be respectively the same.

8. For example: call two finite sets equivalent if they have the same number of elements.

Section 17.4

1. 1 2 ...

2
nd d d  

. We divide by two because each edge connects two vertices and will be counted

twice.

2. No: the number of edges would be
2 2 4 3 6

8.5
2

   
 .

5. Each vertex in the graph must be connected to all 1n  other vertices, so the graph is isomorphic to

. nK

6. Start from any vertex, call it . Follow one of the edges from to the next vertex, call it .

Follow from to the next vertex, . And so on. Because the graph has a finite number of

vertices, at some point you will return to a vertex that has been visited before: . But, if

, is already connected to

1A 1A 2A

2A 3A

1i

1kA   iA

1i  iA A  and 1iA  , and its degree is 2, so it can’t also be connected to

. Therefore, and — you have returned to the starting point. The subgraph with

vertices and the edges that connect them is isomorphic to . There are no other

edges that come out of these vertices because the degree of each vertex in the graph is 2. If we start
from any other vertex, B, we can trace a cycle that goes through B, and this cycle cannot intersect
with the first. (In fact, belonging to the same cycle is an equivalence relationship for the vertices of
our graph.) So, our graph must be a union of disjoint cycles. But we know that it is connected, so it
must consist of only one cycle. We have to conclude that

kA 1
, kA

i

1 2 , ...A A
1kA   1A

, kC

k n , and our graph is isomorphic to . nC

42 CHAPTER 17 ~ GRAPHS

10. In the Bridges of Königsberg puzzle, all four vertices have an odd degree, and removing any edge
will make the puzzle solvable. If we don’t want to begin or end the path on the island, it is better to
remove one of the edges that goes out of the “island” vertex:

12. or 0L  2L 

14. For example, is such a graph. nC

16.

18. No. Such a circuit would have to cross each of the three “bridges” (horizontal edges) once, but it

must go from left to right and back an even number of times.

Section 17.5

1. Two directed graphs are called isomorphic if there exists a one-to-one correspondence between their

vertices and a one-to-one correspondence between their directed edges, such that an edge goes from
vertex A to vertex B in the first graph if and only if the corresponding edge goes from the vertex that
corresponds to A to the vertex that corresponds to B in the second graph.

3.

A

B

2

3 2

1

0

3

1

2

3

5

1

0

1

2

5

6

4

1

3

1 4

1

3

6. A directed graph has an Euler circuit if and only if for each vertex the number of arrows coming in is

equal to the number of arrows going out.

 CHAPTER 17 ~ GRAPHS 43

Section 17.6

1.

1 1 0 0 0 1
1 0 1 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 1 0 0 1 0

A B C D E F

A

B

C

D

E

F

3.

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

C5

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

K5

4. Only (d)

7. If 2B A , the element in B is 1 if and only if the i-th and j-th vertices are connected by a path of

length 2.
ijb

Section 17.7

1.

 1

1

1

1

1
1

2 2

2

2

2

2

2

3. The endpoints of a path of odd length must be different colors; the endpoints of a path of even length

must be the same color.

44 CHAPTER 17 ~ GRAPHS

5. The necessary and sufficient condition for a graph to be colorable in two colors is that the graph does
not contain any odd-length cycles. This condition is necessary because if a graph contains an odd-
length cycle, we can’t properly color that cycle in two colors, let alone the whole graph.

To show that this condition is sufficient, we need to show how to properly color in two colors any
graph with no odd-length cycles. Take any vertex O and color it black. For any vertex X in the
graph consider the shortest path from X to O. If its length is even, color X black; otherwise color X
red. Let us show that this coloring is proper. Take two vertices, X and Y, connected by an edge.
Suppose they are colored in the same color. Then their distances from O have the same parity.
Suppose XO and YO are the shortest paths from X to O and from Y to O, respectively. These paths
first go separately, then they can meet at a vertex C (or O itself). For example:

1

2

2
1

2 1

1

O
X

Y

C

The lengths of the paths XC and YC also have the same parity. These paths, combined with the XY
edge, would form an odd cycle. But we know our graph does not have such cycles.

We have shown that a graph is properly colorable in two colors if and only if it does not contain any
odd-length cycles. Q.E.D.

8.

You can actually replace any edge with a chain of “rhombuses,” like the one shown in the solution to
Question 7.

 CHAPTER 17 ~ GRAPHS 45

9. This graph can be constructed in the shape of a three-layer “wedding cake” or a “lampshade”:

The bottom layer is simply a pentagon (C5). Note that if a pentagon is properly colored in three
colors, and you consider pairs of neighbors for each vertex, you will encounter all possible
combinations of two colors among them. For example, in this colored graph —

 A

B

E

C

D

1

2 3

2 1

— A and E, the neighbors of C, give the 1-2 pair; C and D, the neighbors of E, give the 1-3 pair; C
and B, the neighbors of A, give the 2-3 pair. (It is fairly easy to show that this is true for any polygon
with an odd number of sides.) This fact gives us a hint as to how to construct the middle layer.
Let’s make it another pentagon, above the first one. However, we won’t use its sides, only its five
vertices. We connect each vertex to the two neighbors of the vertex below it. We don’t form any
triangles when we do that. To properly color the bottom and the middle layer, we will need to use
all three colors in the middle layer. For example, if a pair of neighbors is colored 1-2, the vertex
above should be colored 3. The final top layer consists of only one vertex. We connect it to all five
vertices of the middle layer. There is no free color left for the top vertex, so this graph cannot be
properly colored in three colors.

Section 17.8

2.

A+B

3. Consider a subgraph that includes the triangle and all the vertices inside. It has fewer vertices than

our graph, so it can be properly colored in p colors. Now consider the subgraph that includes the
same triangle and all the vertices outside. It, too, can be properly colored in p colors. We can rotate
the colors in the second coloring in such a way that the three different colors used for the vertices of
the triangle become the same as in the first coloring. Now the colorings match on the border (our
triangle), and we can put them together to color the original graph.

46 CHAPTER 17 ~ GRAPHS

4. For example:

5. When we say “Let’s take any two vertices that are not connected by an edge...” we forget that such

vertices may not exist. Our graph may be Kn (). All we proved is that if the graph cannot be
colored in three colors, our “gluing” process eventually reduces it to Kn.

4n 

6. We assume the graph is fully triangulated; if it isn’t, we temporarily add a few edges. When they are

removed, the degree of any vertex can only decrease.
3

2

R
E  , because each region is bounded by

three edges, and each edge is shared by two regions. If the degree of every vertex were greater than

or equal to 6, we would have
6

2

V
E  , because the number of edges meeting at each vertex would be

greater than or equal to 6, and each edge connects two vertices. Then we would have
2

3

E
R  and

3

E
V . From Euler’s formula, 2V E R   

2
2 0

3 3

E E
E 2     — a contradiction.

Our assumption that the degree of every vertex is greater than or equal to 6 cannot be true. Q.E.D.

7.

The smallest number of vertices in such a graph is 12. If k is the number of vertices of degree 5 and

the rest have a degree greater than or equal to 6, we would get
6() 5 6

2 2 2

V k k V k
E

 
   

3 6

E k
V   (see the previous question). Euler’s formula would give us

2
2 2

3 6 3 6

E k E k
E k       12 .

 CHAPTER 18 ~ NUMBER THEORY AND CRYPTOLOGY 47

18 Number Theory and Cryptology

Section 18.2

1. If and , then . On the other hand, if |d a |d b |d a b |d a b and , then , that

is, . So, and have the same common divisors.

|d b  | ()d a b b 
|d a ,a b ,a b b

3.

def gcd(a, b):
 """Return the greatest common divisor of a and b."""
 if a > b:
 return gcd(a - b, b)
 elif a < b:
 return gcd(a, b - a)
 else:
 return a # or return b

This code is also included in PY\PythonCode\NumberTheory.py.

4.

def gcd(a, b):
 """Return the greatest common divisor of a and b."""
 while a > 0:
 b, a = a, b % a
 return b

This code is also included in PY\PythonCode\NumberTheory.py.

5. If a and b are relatively prime, the equation 1ax by  has a solution  0 0,x y . Then  0 0,cx cy is a

solution of . ax by c 

10. Let be an arithmetic sequence. Since p and q are two different primes, they are

relatively prime, and the equation

, , 2 , ...c c p c p 

qx py c  has a solution  0 0,x y .  0 0,x kp y kq  is also a

solution for any k, so there is a solution  ,x y with y > 0. Then qx c py  is a term of our

arithmetic sequence that is divisible by q.

48 CHAPTER 18 ~ NUMBER THEORY AND CRYPTOLOGY

13. The equation has a solution if and only if GCD(a, b, c) = 1. 1ax by cz  

1. Let GCD(a, b, c) = d. , , and , so |d a |d b |d c |d ax by cz  . Therefore, if 1d  , the

equation cannot have solutions. 1ax by cz  

2. Now let’s suppose that d = 1 and show that the equation 1ax by cz   has a solution. Let

GCD(a, b) = h. h and c must be relatively prime (if they had a common divisor, it would be a
common divisor of a, b, and c). So, the equation 1hu cz  has a solution  ,u z . Since

GCD(a, b) = h, and , where and are relatively prime. So, the equation

 has a solution 
1a ha 1b hb

,
1a 1b

1 1a x b y u  x y

) cz 

. We get

. 1 11 (h a x b 1x  1 1b y cz 1y ha h a   1x by cz  hu cz 

Section 18.3

4. 1*2*...*13 + 1 = 30031 is not a prime.

The above is the output from the following program:

n = 1
p = 2
while p <= 1000:
 if is_prime(p): # is_prime is described in Section 7.4
 n *= p
 if not is_prime(n+1):
 print('1*2*...*{0:d} + 1 = {1:d} is not a prime.'.format(p, n+1))
 break
 p += 1
if p > 1000:
 print('Looks like all are primes.')

If you want to know what the prime factors of 30031 are, use the program from Question 3.

This code is also included in PY\PythonCode\NumberTheory.py.

6. This is in fact true for any odd integer. If p is odd, both p+1 and p-1 are even.

2 2
1 1

2 2

p p
p

      
  





.

7. Fibonacci numbers get pretty big fast: for example, 100 354,224,848,179,261,915,075F  . A naive

approach in which we generate Fibonacci numbers in sequence and check each for being a prime is
not practical — it will run forever. A better approach would be to use a standard iterative function
for Fibonacci numbers and test 100F , 99F , and so on, until we find a prime. We can try it for finding

the largest Fibonacci prime among the first n Fibonacci numbers with n equal to, say, 25. But this
method will still run forever for n = 100, because testing a large number for primeness is not a trivial
task. Luckily, someone has already created a list of Fibonacci primes — see, for example,
http://en.wikipedia.org/wiki/List_of_prime_numbers#Fibonacci_primes or
https://oeis.org/A005478 or google “fibonacci primes” As we can see, the largest Fibonacci
prime that does not exceed 100F is 99,194,853,094,755,497.

http://en.wikipedia.org/wiki/List_of_prime_numbers#Fibonacci_primes
https://oeis.org/A005478

 CHAPTER 18 ~ NUMBER THEORY AND CRYPTOLOGY 49

c10. Each divisor d can be expressed as , where 1

1 ... kc
kd p p   1 1 2 20 , 0 , ...,0 k kc j c j c j      .

The number of possible values for is 1c 1 1j  , for is 2c 2j 1 , and so on. The total number of

divisors is . 1 2(1) (1) ... (kj j     1)j 

11. Integers that are not relatively prime with n are divisible by p or by q (or by both). The number of

positive integers below n that are divisible by p is
n

p
. The number of positive integers below n that

are divisible by q is
n

q
. The number of positive integers below n that are not relatively prime with n

is
n n n

p q pq
  (we need to subtract

n

pq
 because we have counted the numbers divisible by both p

and q twice). The number of positive integers below n that are relatively prime with n is

1 1
1 1

n n n
n n

p q pq p q

   
        
   





.

If 1

1 ... kj j
kn p p   , then the number of positive integers below n that are relatively prime with n is

1 2

1 1
1 1 ... 1

k

n
1

p p p

    
         
     

 . This expression is called Euler’s totient function and is

commonly denoted as ()n . The proof is similar.

Section 18.4

3.

def elapsed_time(hour1, min1, hour2, min2):
 return hour2 * 60 + min2 - hour1 * 60 - min1

4.

def thanksgiving(jan1):
 november_1 = (january_1 + 304) % 7
 first_thursday = 5 - november_1
 if first_thursday <= 0:
 first_thursday += 7
 return first_thursday + 21

Or, simply,

def thanksgiving(january_1):
 return (2 - january_1) % 7 + 21

5.

+ 0 1 2 3 4 5 * 0 1 2 3 4 5
0 0 1 2 3 4 5 0 0 0 0 0 0 0
1 1 2 3 4 5 0 1 0 1 2 3 4 5
2 2 3 4 5 0 1 2 0 2 4 0 2 4
3 3 4 5 0 1 2 3 0 3 0 3 0 3
4 4 5 0 1 2 3 4 0 4 2 0 4 2
5 5 0 1 2 3 4 5 0 5 4 3 2 1

50 CHAPTER 18 ~ NUMBER THEORY AND CRYPTOLOGY

8. , , 1 (mod 3)n   1 (mod 4)n   1 (mod 5)n   , and so on, 1 (mod 12)n   . Therefore, the

answer is the least common multiple of 3, 4, 5, ..., 12 minus 1, which is 27719.

9. . By Fermat’s Little Theorem,  2222222 1010 23 3 3  2210103 1 (mod 23) . Therefore,

. 22222 23 3 (mod 23) 9 (mod 23)

11. . p is a prime and it is not 2 or 3, so it is odd and not divisible by 3. p-1 and

p+1 are two consecutive even numbers, so one of them must be divisible by 4. Therefore, their
product must be divisible by 8. Also, p-1, p, and p+1 are three consecutive integers, so one of them
must be divisible by 3. It can’t be p, so it is either p-1 or p+1. (

2 1 (1)(1)p p p   

1)(1)p p  is divisible by 8 and

by 3, so it must be divisible by 24.

14. (b) Any number m, such that 0 < m < p, has a reciprocal modulo p. Only 1 and (p-1) are their own

reciprocals. So all the factors in (p-1)!, except 1 and (p-1), can be split into pairs such that the
product of the numbers in each pair is 1 (mod p). Therefore, (1)! 1 (mod)p p p   and

(1)! 1 0 (mod)p p   , that is, (1)! 1p   is divisible by p.

Section 18.5

2.

abc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def encode(text, key):
 """Encode text using Vigenere cyper.
 text contains only uppercase letters."""
 len_key = len(key)
 code = ''
 k = 0

 for c in text:
 i = abc.find(c)
 j = abc.find(key[k])
 c = abc[(i + j) % 26]
 code += c
 k = (k + 1) % len_key

 return code

def decode(code, key):
 """Decode code encoded with Vigenere cyper."""
 len_key = len(key)
 text = ''
 k = 0

 for c in code:
 i = abc.find(c)
 j = abc.find(key[k])
 c = abc[(i - j) % 26]
 text += c
 k = (k + 1) % len_key

 return text

 CHAPTER 18 ~ NUMBER THEORY AND CRYPTOLOGY 51

key = 'LEMON'
text = 'ATTACKATDAWN'

print('<' + text + '>')
code = encode(text, key)
print('<' + code + '>')
text = decode(code, key)
print('<' + text + '>')

Output:

<ATTACKATDAWN>
<LXFOPVEFRNHR>
<ATTACKATDAWN>

This code is also included in PY\PythonCode\Cipher.py.

4.

p = 170141183460469231731687303715884105727
a = 618970019642690137449562111
r = 5
print(pow_mod(r, a, p))

Output:

26328438978806941546616071351824726077

This code is also included in PY\PythonCode\NumberTheory.py.

6. We set , where (x, y) is a solution of the Diophantine equation D x (1)(1) 1Ex p q y   

2y 
. p = 13,

q = 17, and E = 5. 5 . D = 77. 12 16 1 5 192 1 77,x y x y x       

7. Alice locks a message in a box with her lock and sends the box to Bob. Bob adds his lock to the box

and sends the box back to Alice. Alice receives the box, now locked with two locks, removes her
lock, and sends the box back to Bob. Bob removes his lock and reads Alice’s message.

	Contents
	1 An Introduction to Computers and Coding in Python
	Section 1.2
	Section 1.3
	Section 1.4

	2 Variables and Arithmetic
	Section 2.2
	Section 2.3
	Section 2.4

	3 Sets and Functions
	Section 3.2
	Section 3.3
	Section 3.4
	Section 3.5
	Section 3.6

	4 Algorithms and while and for Loops
	Section 4.2
	Section 4.3

	5 Strings, Lists, Dictionaries, and Files
	Section 5.2
	Section 5.3
	Section 5.4
	Section 5.5
	Section 5.6

	6 Number Systems
	Section 6.2
	Section 6.3
	Section 6.4
	Section 6.5

	7 Boolean Algebra
	Section 7.2
	Section 7.3
	Section 7.4

	8 Digital Circuits and Bitwise Operators
	Section 8.2
	Section 8.3

	9 Turtle Graphics
	Section 9.2
	Section 9.3
	Section 9.4

	10 Sequences and Sums
	Section 10.2
	Section 10.3
	Section 10.4
	Section 10.5

	11 Parity, Invariants, and Finite Strategy Games
	Section 11.2
	Section 11.3
	Section 11.4

	12 Counting
	Section 12.2
	Section 12.3
	Section 12.4
	Section 12.5
	Section 12.6

	13 Probabilities
	Section 13.2
	Section 13.3
	Section 13.4
	Section 13.5

	14 Vectors and Matrices
	Section 14.2
	Section 14.3

	15 Polynomials
	Section 15.2
	Section 15.3
	Section 15.4

	16 Recurrence Relations and Recursion
	Section 16.2
	Section 16.3
	Section 16.4

	17 Graphs
	Section 17.2
	Section 17.3
	Section 17.4
	Section 17.5
	Section 17.6
	Section 17.7
	Section 17.8

	18 Number Theory and Cryptology
	Section 18.2
	Section 18.3
	Section 18.4
	Section 18.5

