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2004 AB 
AP Calculus Free-Response 

Solutions and Notes 
 
 
Question 1 
 

(a) 
30

0
82 4sin

2
t dt  +     ∫ 2474≈ . 

 

(b) 
7t

dF
dt =

1.873 0≈ − < ⇒  ( )F t  is decreasing. 

 

(c) 
15

10

1 82 4sin
5 2

t dt  +     ∫ 81.899≈  cars/min. 

 

(d) [ ]1 1 15 10(15) (10) 4sin 4sin
5 5 2 2

F F     − = −        
1.518≈  cars/min2. 

 
 
Question 2 
 

(a) Area = [ ]
1 1

0 0
( ) ( ) 2 (1 ) 3( 1)f x g x dx x x x x dx − = − − − ∫ ∫ 1.133≈ . 

 

(b) Volume= ( ) ( )
1 2 2

0
2 ( ) 2 ( )g x f x dxπ  − − − = ∫  

( ) ( )
21 2

0
2 3( 1) 2 2 (1 )x x x x dxπ  − − − − −  ∫ 16.179≈ . 

 

(c) ( ) ( )21 12

0 0
( ) ( ) (1 ) 3( 1) 15h x g x dx kx x x x dx− = − − − =∫ ∫ .�1 

 
� Notes: 
 
1. Do not solve. 
 
 



4 FREE-RESPONSE SOLUTIONS ~ 2004 AB 

Question 3 
 

(a) 
( )

2

2 2 4( ) (2)
1 11

t t

tt

dv e e ea t a
dt e ee

= = − = − ⇒ = −
+ ++

.�1 

 
(b) ( )1 2(2) 1 tan 0v e−= − <  and, from Part (a), (2) 0a < .  Since v(2) and a(2) have the 

same sign, the speed is increasing.�2 
 
(c) ( ) ( )1( ) 0 tan 1 tan(1) ln tan(1)t tv t e e t−= ⇒ = ⇒ = ⇒ = 0.443≈ .  There is a 

local max at t = .443 since v is positive to the left and negative to the right.  t = .443 
is the only critical number in the domain, therefore y reaches an absolute maximum 
at this time.�3 

 

(d) ( )( )2 1

0
(2) 1 1 tan ty e dt−= − + −∫ 1.360≈ − .  The particle is moving away from the 

origin because y(2) < y(0) and, v(2) < 0 (from Part (b)). 
 
� Notes: 
 
1. Leave it at that to save time and avoid mistakes.  Or just use your calculator to 

evaluate the derivative: (2) (2)a v′= 0.133≈ − . 

2. Give a reason for full credit. 

3. Justification is required for full credit. 
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Question 4 
 
(a) Using implicit differentiation, 

( ) 3 22 8 3 3 8 3 3 2
8 3

y xx yy y xy y y x y x y
y x
−′ ′ ′ ′+ = + ⇒ − = − ⇒ =
−

. 

 

(b) 0 3 2 0dy y x
dx

= ⇒ − = .  x = 3 and y = 2 satisfy this equation, 8 2 3 3 0⋅ − ⋅ ≠ , and�1  
2 23 4 2 7 3 3 2+ ⋅ = + ⋅ ⋅ , so the point P = (3, 2) is indeed on the curve. 

 

(c) 
( )

( )

2

22

8 3 3 2 (3 2 ) 8 3
3 2
8 3 8 3

dy dyy x y x
d y d y x dx dx
dx dx y x y x

   − − − − −    −    = = − − 
.  At P = (3, 2), 

2

2
3, 2

23 2 0, 8 3 7, and 0
7x y

dy d yy x y x
dx dx

= =

− = − = = ⇒ = − .  The first derivative is 0 

and the second derivative is negative, so the curve has a local maximum at P. 
 
� Notes: 
 
1. You must verify that the point is on the curve. 
 
 
Question 5 
 

(a) 
0

3

2 1(0) ( ) 3
2

g f x dx
−

+
= = ⋅∫ .  (0) (0) 1g f′ = = . 

 
(b) At a relative maximum, ( ) ( )g x f x′ =  must change from positive to negative.  There 

is only one such point, at 3x = . 
 

(c) The absolute minimum may occur at the end points 5x = −  or 4x = , or at 4x = −  
where ( ) ( )g x f x′ =  changes from negative to positive.  

( 5) 0, (4) 0, and ( 4) 1g g g− = > − = − , so the answer is ( 4) 1g − = − . 
 
(d) At a point of inflection, the derivative changes from increasing to decreasing or 

vice-versa.  There are three such points: at 3, 1, and 2x x x= − = = . 
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Question 6 
 
(a)  

 

–1 10 x

y

1

2

3

 
 
(b) 1, 0y x> ≠ . 
 

(c) 2 2 31( 1) ln 1
1 3

dy dyx y x dx y x C
dx y

= − ⇒ = ⇒ − = +
−∫ ∫ .  0, 3 ln 2x y C= = ⇒ = .  

3 3

3 31 2 1 2
x x

y e y e− = ⇒ = + .  
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2004 BC 
AP Calculus Free-Response 

Solutions and Notes 
 
Question 1 
 
See AB Question 1. 
 
 
Question 2 
 
See AB Question 2. 
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Question 3 
 
(a) ( )4 4 2

2 2
(4) (2) ( ) 1 3 cosx x x t dt t dt ′= + = + + ∫ ∫ 7.133≈ . 

 

(b) ( ) ( )(2) 7(2) (2) 8 1
(2) 3 cos(4)

yy y x x y x
x
′ −

− = − ⇒ − = −
′ +

.�1 

 

(c) Speed = ( ) ( )
2 2

2 23 cos(4) 7dx dy
dt dt

   + = + + −   
   

.�1 

 

(d) ( ) [ ]2

4

( ) 3 cos (4) ( )
t

dx t t x x t
dt =

′ ′′ ′= + ⇒ = 2.303≈ .  

( ) ( ) [ ]2

4

( ) 2 1 ( ) 2 1 3 cos (4) ( )
( ) t

y t dt y t t t y y t
x t dt =

′  ′ ′′ ′= + ⇒ = + + ⇒ = ′
24.814≈ .  

( ) ( )(4) (4), (4) 2.303, 24.814a x y′′ ′′= = . 
 
� Notes: 
 
1. To avoid mistakes and save time, do not simplify. 
 
 
Question 4 
 
See AB Question 4. 
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Question 5 
 
(a) This is a logistic model with carrying capacity 12, so for both initial conditions, 

(0) 3P =  and (0) 20P = , lim ( ) 12
t

P t
→∞

= . 

 
(b) P grows from 3 approaching 12.  P is growing the fastest when P is half the 

carrying capacity, that is, P = 6. 
 

(c) 
21 11 1 ln

5 12 5 12 5 24
dY Y t dY t tdt Y t C
dt Y

    = − ⇒ = − ⇒ = − +    
     

∫ ∫ .  

(0) 3 ln 3Y C= ⇒ = .  
212

5 241ln ln 3 ( ) 3
5 24

tttY t Y t e
 
−  

  
= − + ⇒ = 

 
. 

 

(d) 
212

5 24lim ( ) lim3 0
24

tt

t t

tt Y t e
 
−  

 

→∞ →∞

 
− → −∞ ⇒ = = 

 
. 
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Question 6 
 

(a) 2 5 2(0) sin ; (0) 5cos ;
4 2 4 2

f fπ π   ′= = = =   
   

 

25 2 125 2(0) 25sin ; (0) 125sin
4 2 4 2

f fπ π   ′′ ′′′= − = − = − = −   
   

.  

2 32 5 2 25 2 125 2( )
2 2 2 2! 2 3!

P x x x x= + − −
⋅ ⋅

. 

 

(b) 
( )22 22( ) 5 2
22! 2 22!

f x
= −

⋅
.�1 

 

(c) 

4
4 4

4

5 sin 5
1 1 1 5 1 14

10 10 4! 10 4! 10 24 16 100

c
f P

π +       − = < = <      ⋅ ⋅     
. 

 
(d) This polynomial can be obtained by integrating the first three terms in P(x), and 

taking into account that G(0) = 0.  We get 2 32 5 2 25 2
2 2 2 2 6

x x x+ −
⋅ ⋅

. 

 
� Notes: 
 
1. The sign for the k-th term goes +, +, –, –, etc., that is 
 

k 0 1 2 3 ... 20 21 22 
sign + + – – ... + + – 
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2004 AB (Form B) 
AP Calculus Free-Response 

Solutions and Notes 
 
 
Question 1 
 

(a) Area = 
10

1
1x dx−∫ 18= . 

 
(b)  

  

 

x

y 

1 

3 

10  
 

Volume = ( )210 2

1
3 3 1x dxπ  − − −  ∫ 212.058≈ . 

 
(c)  

   

 

x

y 

1 

3 

10 

10–x 

 
 

Volume = ( )3 22

0
9 y dyπ −∫ �1 407.150≈ . 

 
� Notes: 
 

1. 2 21 1 10 9y x x y x y= − ⇒ = + ⇒ − = −  
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t 

M 

0 31 

R(t)

6 

Question 2 
 

(a) Increasing, because 6(6) 5 6 cos
5

R  =  
 

4.438 0≈ > . 

 
(b) Increasing at a decreasing rate, because (6)R′ 1.913 0≈ − < . 

 

(c) Number of mosquitoes = 
31

0
1000 5 cos

5
tt dt +  

 ∫ 964≈ .�1 

 

(d) R(t) > 0 for 50
2

t π
< < , R(t) < 0 for 5 15

2 2
tπ π

< < , and R(t) > 0 for 15 31
2

tπ
< ≤ .  

Therefore the maximum could occur either at 5
2

t π
=  or at t = 31.  The number of 

mosquitoes at 5
2

t π
=  is  

5
2

0
1000 5 cos

5
tt dt

π  +  
 ∫ 1039≈ .  This is greater than 

964, the number of mosquitoes at t = 31 (from Part (c)), so 1039 is the maximum.�2 
 
� Notes: 
 
1. Don’t forget to round. 

2. To keep things simple, you might as well take all the points where R(t) = 0 on 

[0, 31], namely at 5
2

t π
=  and 15

2
t π
= , plus both endpoints, and compare the 

number of mosquitoes at these four times. 
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Question 3 
 

(a) ( ) ( )
40

0

40( ) (5) (15) (25) (35) 10 9.2 7.0 2.4 4.3 229
4

v t dt v v v v≈ + + + = + + + =∫  miles.  

40

0
( )v t dt∫  is the distance in miles traveled by the plane from 0 to 40 minutes. 

 
(b) v(0) = v(15) and v(25) = v(30).  By Rolle’s theorem (or the Mean Value Theorem), 

acceleration, which is ( )v t′ , must equal 0 at least once on each of the intervals 
[0, 15] and [25, 30].  The answer is 2. 
 

(c) The acceleration at t = 23 is (23)f ′ 0.408≈ −  miles/min2. 
 

(d) Average velocity = 
40 40

0 0

1 1 7( ) 6 cos 3sin
40 40 10 40

t tf t dt dt    = + +        ∫ ∫ 5.916≈  miles/min. 
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Question 4 
 
(a) f ′  changes from increasing to decreasing at x = 1 and from decreasing to 

increasing x = 3.  Therefore, there are two points of inflection, at x = 1 and x = 3. 
 

(b) 
1

( ) ( )
x

f x f t dt C
−

′= +∫ .  Since ( ) 0 for 1 4f t t′ ≤ − ≤ ≤  and ( ) 0 for 4 5f t t′ ≥ ≤ ≤ , 

f reaches the absolute minimum at x = 4.  f could reach the absolute maximum at 

1 or 5x x= − = .  But 
5

1
(5) ( 1) ( ) 0f f f t dt

−
′− − = <∫  (because the area of the region 

below the x-axis for 1 4t− ≤ ≤  appears much bigger than the area of the region 
above the x-axis for 4 5t≤ ≤ ).  Therefore, the absolute maximum is at 1x = − . 
 

(c) (2) 2 (2) 12g f= = .  ( )
2

(2) ( ) ( )
x

g f x xf x
=

′ ′= + �1 ( )6 2 1 4= + − = .  An equation for 

the tangent line is ( )(2) (2) 2 12 4( 2)y g g x y x′− = − ⇒ − = − . 

 
� Notes: 
 
1. Using the Product Rule. 
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Question 5 
 
(a)  

 

–1 10 x

y

1

2

3

 
 

(b) 0, 2x y≠ < . 
 

(c) 
5

4 ln 2
2 5

dy xx dx y C
y

= ⇒ − = +
−∫ ∫ .  (0) 0 ln 2y C= ⇒ = .  

5 5

5 52 2 2 2
x x

y e y e− = ⇒ = − .�1 

 
� Notes: 
 

1. We reject the solution 
5

52 2
x

y e= +  because for this solution (0) 0y ≠ . 
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Question 6 
 

(a) 
111

0
0

1
1 1

n
n xx dx

n n

+

= =
+ +∫ . 

 
(b) The equation for the tangent line at (1, 1) is 

( )11 1 ( 1) 1 ( 1)ny n x y n x−− = − ⇒ = + − .  Its x-intercept is 11x
n

= − .  The area of 

the triangle is ( )1 1 11 1 1
2 2n n

  − − =    
. 

 

(c) Area of S = 
1

0

nx dx −∫ area of T = 1 1( )
1 2

g n
n n

= −
+

.  
( )2 2

1 1( )
21

g n
nn

′ = − +
+

.  

( ) 0g n′ =  and changes sign from positive to negative when 

( )2 2 11 2 1 2
2 1

n n n n n+ = ⇒ + = ⇒ =
−

.  Therefore, the area of S reaches 

maximum at 1
2 1

n =
−

.�1 

 
� Notes: 
 

1. Do not despair if your answer is 2 1+ : 1 2 1
2 1

= +
−

. 
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2004 BC (Form B) 
AP Calculus Free-Response 

Solutions and Notes 
 
Question 1 
 

(a) Speed 
2 2

( ) dx dys t
dt dt

   = +   
   

.  ( ) ( )24

0

(0) 9 2 5 9 49t t

t

s t e e−

=

= + + + = + . 

3

4
0

4( ) , 2 5 0, 3
2 9

t t

t

ta t e e
t

−

=

= − = −
+

. 

 

(b) 
4

0 0

2 5 7
39

t t

t t

dy e e
dx t

−

= =

+
= =

+
.  An equation for the tangent line is 71 ( 4)

3
y x− = − . 

 

(c) Distance = ( ) ( )3 3 24

0 0
( ) 9 2 5t ts t dt t e e dt−= + + +∫ ∫ 45.227≈ . 

 

(d) 
3 3 4

0 0
(3) (0) 4 9dxx x dt t dt

dt
= + = + +∫ ∫ 4 13.931≈ + . 
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Question 2 
 

(a) (2) 7f = .  (2) 9 (2) 18
2!

f f
′′

′′= − ⇒ = − . 

 
(b) Yes.  (2) 0 and (2) 0f f′ ′′= < .  Therefore ( )f x  has a relative maximum at x = 2. 

 
(c) ( ) ( )2 3(0) (0) 7 9 2 3 2 5f T≈ = − − − − = − .  We do not have enough information to 

determine whether x = 0 is a critical number for ( )f x .  For example, the whole 

family of functions ( )4( ) ( ) 2g x T x C x= + − , where C is any constant, has the same 
third-degree Taylor polynomial ( )T x .  ( )f x  could be any one of these functions.  
One of these functions has a critical number at x = 0 — when 

( ) ( ) ( )2 3(0) 18 2 3 3 2 4 2 0g C′ = − ⋅ − − ⋅ − + − =  — others don’t.   
 

(d) ( ) ( )
(4)

4(0) (0) 2
4!

f c
f T− = −  for some 0 2c≤ ≤ .  Therefore, 

( ) 46(0) 5 2 4 (0) 5 4 (0) 1 0
4!

f f f− − ≤ = ⇒ + ≤ ⇒ ≤ − < . 

 
 
Question 3 
 
See AB Question 3. 
 
 
Question 4 
 
See AB Question 4. 
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Question 5 
 

(a) 
44

1 1

1 1 22
4 1 3 3

dx x
x
= =

− ∫ . 

 

(b) Volume = ( )
4 42

1 1

1( ) ln 4g x dx dx
x

π π π= =∫ ∫ . 

 

(c) Average area = Volume ln 4
4 1 3

π=
−

. 

 

(d) 
4

( ) 2 2 4 , when
b
g x dx b b= − →∞ →∞∫ .  

4
( ) 2 2 4 2lim lim lim 0

4 4 4

b

b b b

g x dx b
b b b→∞ →∞ →∞

−
= = =

− − +

∫
.�1 

 
� Notes: 

1. Or use l’Hôpital’s Rule: 

1
2 2 4lim lim 0

4 1b b

b b
b→∞ →∞

−
= =

−
 

 
 
Question 6 
 
See AB Question 6. 
 
 
 


