

Coding
in

Python

and

Elements of
Discrete Mathematics

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin
Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2019 by Maria Litvin, Gary Litvin, and
Skylight Publishing

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the authors and Skylight Publishing.

Library of Congress Control Number: 2019905086

ISBN 978-0-9972528-4-2

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks owned
by corporations and other commercial entities. Skylight Publishing and the authors have no
affiliation with and disclaim any sponsorship or endorsement by any of these products’
manufacturers or trademarks’ owners.

1 2 3 4 5 6 7 23 22 21 20 19

Printed in the United States of America

9 Turtle Graphics

9.1 Prologue 168

9.2 The turtle Module Basics 170

9.3 Coordinates and Text 179

9.4 Colors 185

9.5 Review 190

167

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

168 CHAPTER 9 ~ TURTLE GRAPHICS

9.1 Prologue

Alice thought to herself, “I don’t see how he can ever finish, if he
doesn’t begin.” But she waited patiently.
 “Once,” said the Mock Turtle at last, with a deep sigh, “I was a
real Turtle.”

 Alice’s Adventures in Wonderland by Lewis Carroll

The idea of using computers and robots for teaching young children arose over half a
century ago. In the late 1960s, three researchers, Wally Feurzeig and Cynthia
Solomon from the research firm Bolt, Beranek and Newman (BBN), and Seymour
Papert, a fellow at the Artificial Intelligence (AI) lab at the Massachusetts Institute of
Technology (MIT), designed a first programming language for children. They called
their language Logo, from the Greek word “logos,” which means “word” or
“thought.” In those days, computers were big and expensive and used only for
“serious” applications (military, data processing, research); to many people the idea
of kids using valuable computer time sounded crazy. Yet Logo thrived, and within a
few years it became popular among teachers and was introduced in many schools.

At first, Logo was meant to introduce young kids to AI ideas and methods. But one
of Logo’s features was a virtual (not physically existing) robot that could follow
simple commands and draw pictures on the computer screen. Papert’s group called
the robot a “turtle” in honor of earlier “turtle” robots created by Grey Walter in the
late 1940s (Figure 9-1). (The name “turtle” was reportedly inspired by the Mock
Turtle character in Lewis Carroll’s Alice in Wonderland.)

A real turtle robot that executed Logo instructions was built at MIT in 1969. In 1972,
BBN engineer Paul Wexelblat designed and built the first wireless floor turtle
(Figure 9-2).

Logo’s “turtle graphics” capability quickly overshadowed Logo’s other features, and
it became known primarily as the turtle graphics language. Logo is alive and well
today: many Logo versions and apps exist as free downloads, and turtle graphics
ideas are implemented in other graphics packages and programming languages such
as Scratch and, of course, Python’s turtle graphics module (library of functions).

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

 9.1 ~ PROLOGUE 169

Figure 9-1. A reproduction of one of Grey Walter’s “turtle” robots

Courtesy http://roamerrobot.tumblr.com/post/23079345849/the-history-of-turtle-robots

Figure 9-2. Paul Keelboat’s wireless turtle, 1972

Courtesy http://cyberneticzoo.com/cyberneticanimals/
1969-the-logo-turtle-seymour-papert-marvin-minsky-et-al-american/

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

170 CHAPTER 9 ~ TURTLE GRAPHICS

9.2 The turtle Module Basics

Python’s turtle module comes with the standard Python installation from
python.org. If you want to use turtle, you need to import it into your program:

from turtle import * # import everything from the turtle module

If you wish, you can experiment with turtle commands (functions) directly from
the Python shell. Try this:

>>> from turtle import *
>>> shape("turtle")
>>> forward(100)

A window will pop up with a line drawn by the turtle:

Table 9-1 shows the basic turtle commands (functions) needed to get you started.
https://docs.python.org/3.7/library/turtle.html describes all the turtle and screen
functions.

turtle functions are convenient and easy to use. Several names may be supported
for the same function: a fully spelled-out name and an abbreviated name, such as fd
for forward .

We will use full names of turtle functions in our programs for better
readability and recommend you do the same — no need to save a few
keystrokes.

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

https://docs.python.org/3.7/library/turtle.html

 9.2 ~ THE turtle MODULE BASICS 171

Function Action

shape(name) Choose turtle’s shape: 'arrow', 'turtle',
'circle', 'square', 'triangle', or
'classic' (default). You can define your own
shape.

speed(v) Set turtle’s moving and drawing speed:
'fastest' or 0, 'fast' or 10, 'normal' or 6,
'slow' or 3 (default), 'slowest' or 1.

color(colorname) Set pen and fill colors. colorname can be a
string, for example, color('red'). (Other
formats are supported — see Section 9.3.)

penup()
pu()
up()

Lift the “pen” from the “paper” (ready to move
without drawing).

pendown()
pd()
down()

Place the “pen” on the “paper” (ready to draw).

forward(d)
fd(d)

Move forward by d units (while drawing or not).

backward(d)
bk(d)
back(d)

Move backward by d units.

right(deg)
rt(deg)

Turn (clockwise) by deg degrees.

left(deg)
lt(deg)

Turn (counterclockwise) by deg degrees.

showturtle() or st()
hideturtle() or ht()

Make the turtle visible.

Make the turtle invisible.

Table 9-1. Basic turtle functions

The distances in turtle functions are in pixels (“picture elements”) by
default.

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

172 CHAPTER 9 ~ TURTLE GRAPHICS

If the screen resolution in your device is listed, say, as 1920 by 1200, it means that
the full screen is 1920 pixels horizontally and 1200 pixels vertically. The dimensions
of the turtle graphics window are returned by the window_width() and
window_height() functions. For example:

>>> from turtle import *
>>> window_width(), window_height()
(960, 900)

setup(width, height) defines your own custom size.

When a turtle is first created, it is placed at the center of the window,
facing east (to the right), with its pen down, ready for drawing.

If you have trouble figuring out turtle graphics code, imagine that you
are the turtle and try following the commands. Just don’t draw on the
rug!

The statement from turtle import * not only imports all turtle functions into
your program, but also creates an anonymous turtle object whose functions can be
called without any name-dot prefix. For example:

from turtle import *
shape('turtle')
speed('fastest')
forward(100)

You can create any number of other turtles and give them names. To call a named
turtle’s functions, you need to use the name-dot prefix. For example:

from turtle import *

setup(width=200, height=200)
alice = Turtle(shape='turtle')
alice.color('blue')
alice.forward(80)
bob = Turtle(shape='turtle')
bob.color('red')
bob.penup()
bob.right(90)
bob.forward(40)
bob.left(90)
bob.pendown()
bob.forward(80)

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

 9.2 ~ THE turtle MODULE BASICS 173

This displays

Example 1

Draw an equilateral triangle with a side length of 80 and a horizontal base centered in
the middle of the graphics window:

Solution

If the triangle is traced counterclockwise, the turtle needs to turn left by 120º after
drawing each side:

120º

from turtle import *

penup()
backward(40)
pendown()
for k in range(3):
 forward(80)
 left(120)

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

174 CHAPTER 9 ~ TURTLE GRAPHICS

Example 2

Draw a blue regular hexagon (a hexagon whose sides are all the same length and
whose angles are all the same) that is centered at the center of the graphics window
and has sides 100 pixels long. Return the turtle to the center of the window when
done:

Solution

from turtle import *

shape('turtle')
color('blue')
penup()
backward(100)
right(60)
pendown()
for k in range(6):
 forward(100)
 left(60)
penup()
left(60)
forward(100)

Example 3

Write and test a function that draws a rectangle with given dimensions using a
specified turtle, starting from that turtle’s current position and direction.

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

 9.2 ~ THE turtle MODULE BASICS 175

Solution

def draw_rectangle(t, w, h):
 """Draw a rectangle of width w and height h using the turtle t,
 going counterclockwise from its current position and direction
 and in its current color. Leave the turtle with its pen up.
 """
 t.pendown()
 for k in range(2):
 t.forward(w)
 t.left(90)
 t.forward(h)
 t.left(90)
 t.penup()

Then

escher = Turtle()
escher.color('purple')
escher.left(45)
draw_rectangle(escher, 89, 55)

draws

turtle can also draw filled shapes. Table 9-2 shows the relevant functions.

Function Action

begin_fill() Register the current position as the
starting position for a filled shape.

end_fill() End registering and fill the registered
shape.

color(c1, c2) Set the pen color to c1 and the fill color
to c2.

Table 9-2. Functions for filling shapes

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

176 CHAPTER 9 ~ TURTLE GRAPHICS

The begin_fill() call tells the turtle to register the current position as the starting
position for a filled shape. The end_fill() call fills the area within all the lines
drawn since the begin_fill call. t.color(c) sets both t’s pen color and fill
color to c, but you can specify different pen and fill colors by calling color with two
parameters. For example,

>>> color('red', 'yellow')

sets the pen color to red and the fill color to yellow. The calls pencolor(c) and
fillcolor(c) set the pen color and the fill color, respectively.

Example 4

Write and test a function draw_chessboard(t, size, colors) that uses the
turtle t to draw a chessboard:

size is the size of each square; colors is a tuple of two colors, for the dark and
light squares. Use the draw_rectangle function from the previous example.

Solution

def draw_chessboard(t, size, colors):
 """Draw a chessboard using the turtle t with squares
 of a given size in given colors.
 """
 for row in range(8):
 for col in range(8):
 t.color(colors[(row + col)%2])
 t.begin_fill()
 draw_rectangle(t, size, size)
 t.end_fill()
 t.forward(size+1)
 t.back(8*size+8)
 t.right(90)
 t.forward(size+1)
 t.left(90)

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

 9.2 ~ THE turtle MODULE BASICS 177

 # Draw the border:
 t.back(1)
 t.left(90)
 t.forward(size)
 t.right(90)
 t.color('black')
 draw_rectangle(t, 8*size+8, 8*size+8)

deepblue = Turtle() # IBM's Deep Blue chess supercomputer beat Garry
 # Kasparov, then the chess world champion, in 1997
deepblue.speed('fastest')
deepblue.hideturtle() # to speed up the drawing
deepblue.penup()
deepblue.back(200)
draw_chessboard(deepblue, 40, ('yellow', 'blue'))

Or use the default anonymous turtle:

speed('fastest')
hideturtle()
penup()
back(200)
draw_chessboard(getturtle(), 40, ('yellow', 'blue'))

getturtle() returns the anonymous turtle.

Section 9.2 ~ Exercises

1. Draw a tic-tac-toe grid

2. Write a function draw_polygon(n, a) that uses a default turtle to draw a

regular polygon with n sides of length a, in the current color. Hint: if you
have n sides, you need to turn n times and cover the whole 360º angle at the

end, so each turn is
360

n
 degrees.

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

178 CHAPTER 9 ~ TURTLE GRAPHICS

3. (a) Convert the code from Example 2 into a function
draw_hexagon(side) that draws a hexagon with a given side length
in the current color, centered at the current position.

 (b) Use the function from Part (a) to draw three concentric hexagons of

different colors. For example:

 (c) Add a few lines of code to your solution for Part (b) to make the
innermost hexagon filled, like this:

4. Using the draw_rectangle function from Example 3 or the

draw_polygon function from Question 2, draw a path, made of ten
flagstones, that bends slightly upward. The colors of the flagstones should
vary, chosen at random among red, blue, dark green, black, and orange. For
example:

Hint: Recall that the function choice from the random module returns a
randomly chosen element of a list.

5. Convert the code from Example 1 into the draw_triangle function and

draw a pyramid of triangles like this:

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

 9.3 ~ COORDINATES AND TEXT 179

6. Using the draw_polygon function from Question 2, draw a honeycomb
filled with “honey” (orange color):

7. Write and test a function to draw a flower with a specified number of petals:

Hint: For a prettier flower, the number of petals should be an odd number.
Add 1 if the specified number of petals is even.

9.3 Coordinates and Text

turtle’s coordinate system is similar to Cartesian coordinates in math: the x-axis is
horizontal and points to the right; the y-axis is vertical and points up (unlike many
other computer graphics packages where the y-axis points down). The origin is at the
center of the graphics window (Figure 9-3). The default units are pixels. Angles are
measured as in math, starting from the positive direction of the x-axis and going
counterclockwise; the default units for angles are degrees.

x

y

Figure 9-3. Python turtle graphics default coordinates

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

180 CHAPTER 9 ~ TURTLE GRAPHICS

turtle has functions that change the size of the graphics window, the origin of the
coordinate system, and the units, but we will stay with the defaults.

So far we have used turtle functions that move and turn the turtle relative to its
current position and direction: forward, backward, left and right. These
commands are easy for a robot to handle, and, in fact, for humans, too. But turtle
also has several functions that deal with absolute coordinates and angles. These
functions are summarized in Table 9-3.

turtle also has a function circle that draws a circle of a given radius, starting at
the current position and direction and going counterclockwise. circle also can
draw an arc if the extent parameter is given. For example:

t = Turtle()
t.left(180)
t.circle(80, extent=180)

draws a semicircle:

circle will actually draw a polygon if the steps parameter is specified. For
example:

>>> from turtle import *
>>> circle(80, steps=5)
>>> hideturtle()

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

 9.3 ~ COORDINATES AND TEXT 181

Function Action

position()
pos()

Return turtle’s current x-y coordinates (as a
tuple).

xcor()
ycor()

Return turtle’s current x- or y-coordinate,
respectively.

distance(x, y) Return the distance from the turtle to the point
(x, y).

heading() Return turtle’s current direction.

towards(x, y) Return the angle from the x-axis to the vector
(line) from the turtle to the point (x, y).

setposition(x, y)
setpos(x, y)
goto(x, y)

Move the turtle to the point (x, y); the turtle’s
direction remains unchanged.

setx(x)
sety(y)

Set the turtle’s respective coordinate without
changing the other coordinate or direction.

setheading(to_angle)
seth((to_angle)

Change the turtle’s direction to to_angle.

home() Return the turtle to the origin, pointing east.

Table 9-3. turtle functions that use absolute coordinates and angles

The dot(diameter, c) function will draw a circular dot of the given diameter,
filled with the color c and centered at the current turtle’s position. dot(diameter)
draws a dot in the current color.

Example 1

Draw a smiley face:

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

182 CHAPTER 9 ~ TURTLE GRAPHICS

Solution

pensize(2) # for thicker lines
circle(120)
penup()
setposition(-50, 140)
dot(30)
setposition(50, 140)
dot(30)
setposition(-40, 60)
setheading(-53.13) # the angle in the 3-4-5 triangle is arctan(4/3)
pendown()
pensize(4)
circle(50, extent=2*53.13)
penup()
hideturtle()

turtle’s write(msg, font=fnt) function displays the string msg in a specified
font. For example:

t = Turtle()
t.write('Once I was a real turtle.', font=('arial', 20))

displays

The text is displayed in the turtle’s current color. The current direction
of the turtle does not affect the text and remains unchanged.

The font parameter is a tuple that includes the font name and size, which can be
followed by 'bold', 'italic', and/or 'underline' in any combination and
order. For example:

t = Turtle('turtle')
t.color('blue')
t.write('Once I was a real turtle.', font=('Arial', 20, 'bold', 'italic'))

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

 9.3 ~ COORDINATES AND TEXT 183

The available font names are those installed in your operating system, but in a
portable program it is advisable to use only common fonts that are available in most
systems, such as 'Arial', 'Times', and 'Courier', or just write None for the
font name to use the default font.

By default, the left end of the baseline of text will be at the current turtle position.
An optional parameter, align='center' or align='right', will place the center
or the right end of the baseline at the current position. The optional parameter,
move=True will move the turtle to the end of the baseline (and draw if the pen is
down). For example:

t.write('Once I was a real turtle.',
 font=('times', 20, 'italic'), align='center', move=True)

If the text string contains '\n' characters, write will correctly display
multiple lines.

Section 9.3 ~ Exercises

1. Draw a “hamburger” button

2. The game of Nim is, theoretically, played with piles of stones, but it is

commonly played with rows of sticks instead. Draw a configuration with
three rows of sticks:

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

184 CHAPTER 9 ~ TURTLE GRAPHICS

3. Another, isomorphic (mathematically identical) representation of Nim is
tokens moving from left to right on a rectangular board. Draw the Nim
configuration with three tokens:

 (It is identical to the three rows of sticks in the previous question.)

4. Draw a snowman:

5. In the Tower of Hanoi puzzle, you need to transfer a pyramid of disks from

one peg to another, using the third peg as a “spare.” You can only move one
disk at a time, and you may place it only on top of a larger disk or on the
base. Draw a two-dimensional sketch of the puzzle with five disks:

6. Draw a stop sign:

STOP

Don’t worry about an exact font match — Arial will do for this exercise.

7. Display the code that draws a hexagon to the right of the hexagon it draws

(see Example 2 in the previous section). Use the Courier font for the code.

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

 9.4 ~ COLORS 185

8. Draw a fairly smooth graph of the parabola 2y x with a label to its right:

y = x2

Hint: generate the segment of the parabola for 3 x 3 but scale the
graph by a factor of 30 or 40.

9. Draw a diagram that illustrates the golden ratio (actually taken from the next

chapter of this book). Add the equation to the right of the rectangle:

a+b

a

a b

a

a b a

a b

9.4 Colors

In turtle graphics a virtual turtle draws on virtual paper with a virtual pen. No pen
exists, of course. What you see on your computer screen is ultimately determined by
the contents of the video memory (VRAM) on the graphics adapter card or the
graphics processor chip. VRAM represents a rectangular array of pixels (picture
elements). Each pixel has a particular color, which can be represented as a mix of
red, green, and blue components, each with its own intensity. A typical graphics
adapter uses eight bits to represent each of the red, green, and blue (RGB) values (in
the range from 0 to 255). The image on the screen is produced by setting the color of
each pixel in VRAM. The video hardware scans the whole video memory
continuously and refreshes the image on the screen.

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

186 CHAPTER 9 ~ TURTLE GRAPHICS

A graphics processor is what we call a raster device: each individual pixel can be set
separately from other pixels. (This is different from a vector device, such as a
plotter, which actually draws lines on paper directly from point A to point B, with a
pen of a particular color.) To draw a red line or a circle on a raster device, you need
to set just the right group of pixels to the red color. That’s where a graphics package
helps: you certainly don’t want to program all those functions for setting pixels
yourself.

A graphics package has to provide functions for setting colors. Python’s turtle
inherits screen and color handling from the tkinter package (Tk interface), which
is Python’s standard toolkit for GUI (Graphical User Interface) development.
tkinter uses names assigned to several hundred selected colors. (These names are
standard in web app development environments.) You can find some of the named
colors with their RGB components in hex and/or decimal form on many web sites,
for example, https://trinket.io/docs/colors. A complete list of named colors is
available at https://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm.

Table 9-4 summarizes turtle’s color functions.

Function Action

color(c)
color(c1, c2)
color()

Set pen color and fill color to c.
Set pen color to c1 and fill color to c2.
Return turtle’s current pen color and fill color

(each as an RGB tuple or name).

pencolor(c)

pencolor()
Set pen color.
Return turtle’s current pen color.

fillcolor(c)
fillcolor()

Set fill color.
Return turtle’s current fill color.

pensize(w) Set the width of strokes to w; the default is 1.

Screen().colormode(256) Set RGB tuples scale to 0-255.

Table 9-4. turtle color handling functions

The color function has two forms: color(c) sets the color c as both the pen color
and the fill color. color(c1, c2) sets c1 as the pen color and c2 as the fill color.

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

https://trinket.io/docs/colors
https://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm

 9.4 ~ COLORS 187

The parameter c can be a literal string that holds the color name. It can also be a
tuple of three values, the RGB components, or a literal string that holds '#' followed
by six hex digits, two for each RGB component. (The RGB values are often
expressed in hex because it is convenient to use two hex digits for each component.)
For example,

>>> color('#25D3A0')

sets the red component to 0x25 (decimal 37), the green component to 0xD3 (decimal
211) and the blue component to 0xA0 (decimal 160).

'#000000' means black and '#FFFFFF' means white.

The turtle module uses two modes for representing RGB values in a tuple of three
elements. In the first mode, these values are real numbers, scaled to the range from 0
to 1. This is the default mode.

To scale these values back to integers in the usual range, from 0 to 255, use

Screen().colormode(255)

Screen() returns the object screen associated with the drawing window. It has
functions that control the window size, coordinate units, and other settings. See
turtle documentation for the list of screen’s functions.

There are two other functions that set color — pencolor(c) and fillcolor(c);
They set the pen color and the fill color, respectively. The supported formats for the
parameter c in these functions are the same as for color.

color(), when called without parameters, returns the current pen and fill colors
either as their symbolic names (if they were set like that) or as a tuple of RGB values
(according to the current colormode).

Example 1

What are the RGB values for 'dark salmon'?

Solution

According to https://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm/ and other web sites,
the RGB components for this color are 233, 150, 122.

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

https://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm/

188 CHAPTER 9 ~ TURTLE GRAPHICS

Example 2

Does the color '#ff69b4' have a symbolic name?

Solution

Google “#ff69b4” to find out.

Python’s turtle module and the screen object have many more
functions — for setting window dimensions, defining stroke width,
creating new turtle shapes, getting user input, creating animations,
capturing mouse clicks and keyboard events, and so on.

See https://docs.python.org/3.7/library/turtle.html#module-turtledemo for examples.

Section 9.4 ~ Exercises

1

2

3

4

5

. If each of the three RGB color components is represented in one byte, how
many different RGB colors are there?

. If the screen resolution is 1920 by 1200 and three bytes per pixel are used for

color, what is the required size of the video memory?

. Is the 1920 by 1200 screen aspect ratio close to the golden ratio?

. What are the RGB values for the color 'maroon'?

. Draw a color swatch for the 27 colors formed by combinations of 0, 127 and
255 values for each R, G, and B components:

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

https://docs.python.org/3.7/library/turtle.html#module-turtledemo

 9.4 ~ COLORS 189

6. Draw a rainbow of seven colors on a light gray background:

The rainbow colors are red, orange, yellow, green, blue, indigo, and violet.

 Hints:

(a) Screen().bgcolor(c) sets the background color of the graphics

window.

(b) Draw the rings as overlapping filled semicircles, starting with the largest
one and ending with the smallest semicircle in the background color.

7. Display a smooth gradient from pale pink to bright red:

Now reproduce the famous optical illusion by adding a rectangle of solid
mid-range red in the middle:

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

190 CHAPTER 9 ~ TURTLE GRAPHICS

9.5 Review

Terms introduced in this chapter:

Logo
Turtle graphics
Module
Virtual
Pixel
Raster device
Graphics adapter

Some of the Python features introduced in this chapter:

from turtle import * # import everything

t = Turtle() or t = Turtle('turtle')

turtle functions:
 speed, forward, backward, left, right, penup, pendown,
 begin_fill, end_fill
 showturtle, hideturtle
 setheading, goto, setx, sety, home

turtle color functions:
 color, pencolor, fillcolor, pensize

Screen().colormode(255)

C
op

yr
ig

ht

 2
0

19
 b

y
S

ky
lig

ht
 P

ub
lis

hi
ng

	Brief Contents
	About the Authors
	Contents
	Preface
	How to Use This Book
	Chapter 1. An Introduction to Computers and Coding in Python
	1.1 Prologue
	1.2 CPU and Memory
	1.3 Python Interpreter
	1.4 Using IDLE
	1.5 Review

	Chapter 2. Variables and Arithmetic
	2.1 Prologue
	2.2 Python Code Structure
	2.3 Variables
	2.4 Arithmetic Operators
	2.5 Review

	Chapter 3. Sets and Functions
	3.1 Prologue
	3.2 Sets in Math and in Python
	3.3 Ways to Define a Function in Math
	3.4 Functions in Python
	3.5 Function Arguments
	3.6 Python’s Built-In Functions
	3.7 Review

	Chapter 4. Algorithms and while and for Loops
	4.1 Prologue
	4.2 Algorithms
	4.3 while and for Loops
	4.4 Review

	Chapter 5. Strings, Lists, Dictionaries, and Files
	5.1 Prologue
	5.2 Indices, Slices, and the in Operator
	5.3 Strings
	5.4 Lists and Tuples
	5.5 Dictionaries
	5.6 Files
	5.7 Review

	Chapter 6. Number Systems
	6.1 Prologue
	6.2 Positional Number Systems
	6.3 The Binary, Octal, and Hexadecimal Systems
	6.4 Representation of Numbers in Computers
	6.5 Irrational Numbers
	6.6 Review

	Chapter 7. Boolean Algebra and if else Statements
	7.1 Prologue
	7.2 Operations in Boolean Algebra
	7.3 Logic and Sets
	7.4 if-else Statements in Python
	7.5 Review

	Chapter 8. Digital Circuits and Bitwise Operators
	8.1 Prologue
	8.2 Gates
	8.3 Bitwise Logical Operators
	8.4 Review

	Chapter 9. Turtle Graphics
	9.1 Prologue
	9.2 The turtle Module Basics
	9.3 Coordinates and Text
	9.4 Colors
	9.5 Review

	Chapter 10. Sequences and Sums
	10.1 Prologue
	10.2 Arithmetic and Geometric Sequences
	10.3 Sums
	10.4 Infinite Sums
	10.5 Fibonacci Numbers
	10.6 Review

	Chapter 11. Parity, Invariants, and Finite Strategy Games
	11.1 Prologue
	11.2 Parity and Checksums
	11.3 Invariants
	11.4 Finite Strategy Games
	11.5 Review

	Chapter 12. Counting
	12.1 Prologue
	12.2 The Multiplication Rule
	12.3 Permutations
	12.4 Using Division
	12.5 Combinations
	12.6 Using Addition and Subtraction
	12.7 Review

	Chapter 13. Probabilities
	13.1 Prologue
	13.2 Calculating Probabilities by Counting
	13.3 More Probabilities by Counting
	13.4 Multiplication, Addition, and Subtraction
	13.5 Pseudorandom Numbers
	13.6 Review

	Chapter 14. Vectors and Matrices
	14.1 Prologue
	14.2 Operations on Vectors
	14.3 Matrices
	14.4 Review

	Chapter 15. Polynomials
	15.1 Prologue
	15.2 Addition and Subtraction
	15.3 Multiplication, Division, and Roots
	15.4 Binomial Coefficients
	15.5 Review

	Chapter 16. Recurrence Relations and Recursion
	16.1 Prologue
	16.2 Recurrence Relations
	16.3 Recursion in Programs
	16.4 Mathematical Induction
	16.5 Review

	Chapter 17. Graphs
	17.1 Prologue
	17.2 Types of Graphs
	17.3 Isomorphism of Graphs
	17.4 Degree of a Vertex
	17.5 Directed and Weighted Graphs
	17.6 Adjacency Matrices
	17.7 Coloring Maps and Graphs
	17.8 The Four Color Theorem
	17.9 Review

	Chapter 18.Number Theory and Cryptology
	18.1 Prologue
	18.2 Euclid’s Algorithm
	18.3 The Fundamental Theorem of Arithmetic
	18.4 Arithmetic of Remainders
	18.5 Ciphers
	18.6 Review

	Appendix A. Getting Started with Python
	Appendix B. Selected Built-In, math, and random Functions
	Appendix C. String Operations and Methods
	Appendix D. List, Set, and Dictionary Operations and Methods
	Index

