
[image: image1.emf]A Case Study in OO Design

and Team Development

The Game of SET:

Maria Litvin

Phillips Academy

Andover, Massachusetts

Advanced Placement Program Professional Development 2004-2005, AP Computer

Science A and Computer Science AB, Special Topic: Object-Oriented Design.

Copyright © 2004 by College Board. Reproduced with permission. All rights

reserved. www.collegeboard.com.

Slide 3

[image: image2.emf]3

The SET Game

SET is a simple card game which is

gaining popularity.

http://www.setgame.com has the official

rules, examples, game variations, and

other resources.

SET

®

 is a registered trademark of SET

Enterprises, Inc.

Slide 4

[image: image3.emf]4

The SET Game (cont’d)

A SET deck consists of 81 cards. A card

has four attributes:

–number of symbols (1, 2, or 3)

–symbol shape (oval, squiggle, or diamond)

–symbol fill (outlined, striped, or solid)

–symbol color (red, green, or blue)

A “set” is three cards, such that for each

attribute its values for the cards are either

all the same or all different.

One example

of a “set”

Slide 5

[image: image4.emf]5

The SET Game (cont’d)

At the start of the game, 12 cards are open and all

the players look for a “set” in them.

The player who sees a set announces, “Set!” then

promptly points to the three cards of the set.

If the cards indeed form a set, these cards are

removed and replaced with three cards from the

deck, and the player gets one point; otherwise, the

cards remain on the table, and the player loses

one point.

If all the players agree that the open cards don’t

have any sets, 3 additional cards are opened.

Slide 6

[image: image5.emf]6

Computer SET

The deck

The open

cards

A “Set”

Computer speed

control

“Set!” button

Slide 7

[image: image6.emf]7

Identifying Classes — CRC Cards

CRC (Class, Responsibilities, Collaborators)

cards facilitate brainstorming for identifying

classes in an OO project.

A CRC card is usually an index card that lists

a class, its responsibilities, and helper

classes.

CRC cards are informal; responsibilites are

listed with few details (not a list of the class’s

methods).

Slide 8

[image: image7.emf]8

CRC Cards for SET

ZetCard

Represents a SET card

Holds card attributes (color,

fill, etc.)

ZetDeck

Holds 81 SET cards

Shuffles and sorts the deck

Delivers cards one at a time

ZetCard, ZetTable

ZetTable

Holds the deck and the open

cards

Opens and removes cards

Looks for a “set”

ZetDeck, ZetAnalyzer

Unfortunately, the name of

the game, SET, clashes with

java.util.Set and with names

of setter methods. To avoid

confusion, in this case study

we use Zet in class and

method names.

Slide 9

[image: image8.emf]9

CRC Cards for SET (cont’d)

ZetGameModel

Keeps track of the card

table and the picked cards

Updates the display as

necessary

ZetTable, ZetTableDisplay

ZetTableDisplay

Draws the open cards,

picked cards, and the deck

ZetTable, ZetGameModel

ComputerZetPlayer

Displays computer’s control

panel

Handles timer events

Keeps computer’s score

ZetGame, ZetGameModel

HumanZetPlayer

Displays guest’s control

panel

Handles keyboard / mouse

Keeps guest’s score

ZetGame, ZetGameModel

ZetGame

Consolidates GUI

Creates and manages the

players and the game model

ZetGame, ZetGameModel

ZetAnalyzer

Determines whether three

cards form a “set”

Finds a “set” in a given array

of cards

ZetTable

Slide 10

[image: image9.emf]10

UML Diagrams

UML (Unified Modeling Language) diagrams

represent graphically relationships between

classes.

Class AClass B

extends

Class AInterface B

implements

Class A

uses

Class B

Object of Class A

has-a(n)

Object of Class B

Collection A

holds

Objects of Class B

or

1

*

Slide 11

[image: image10.emf]11

SET Classes

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTableZetAnalyzer

ZetDeckZetCard

DeckCard

Slide 12

[image: image11.emf]12

OO Design Basics

ZetTable

Holds the deck and the open cards

Opens and removes specified cards

Looks for a “set” in the open cards

Rearranges the open cards, filling gaps

when necessary

ZetDeck, ZetAnalyzer

Make each class implement a limited set of

responsibilities.

Slide 13

[image: image12.emf]13

public class ComputerZetPlayer extends JPanel implements ZetPlayer, ...

{

 public ComputerZetPlayer (ZetGame game,

 ZetGameModel gameModel) { ... }

 public void start () { ... }

 public void stop () { ... }

 public int getScore() { ... }

 public void setScore(int score) { ... }

 ...

 private void declareZet () { ... }

 private int state;

 private int delay;

 private int score = 0;

 ...

}

Encapsulate classes; make classes interact via

well-defined public constructors and methods.

Slide 14

[image: image13.emf]14

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayerHumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeckZetCard

DeckCard

Arrange classes in layers: classes in the top layers utilize

simpler, more general classes from the bottom layers.

Slide 15

[image: image14.emf]15

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayerHumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeckZetCard

DeckCard

Minimize coupling (interdependences between

classes, subsystems).

Slide 16

[image: image15.emf]16

Provide tests for individual classes and

sybsystems, where possible.

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTableZetAnalyzer

ZetDeckZetCard

Deck

Card

TestZetAnalyzer

TestZetTable

TestZetDeck

TestDeck

Slide 17

[image: image16.emf]17

A framework for

other SET-type

games and

activities

Classes

for any

card game

Create reusable classes or frameworks (extendable

systems of classes) when appropriate. (But do not

overgeneralize!)

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

DeckCard

Slide 18

[image: image17.emf]18

Model

View1

View2

View3

Controller1

Controller2

Follow established design patterns,

when applicable.

Model-View-Controller (MVC),

(a.k.a Observer) design pattern:

• Controller(s) trigger changes in the

 model

• The model notifies all the “views”

 (observers) that it has changed

• The views are updated

Slide 19

[image: image18.emf]19

MVC in SET

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

DeckCard

interface

java.util.

Observer

java.util.

Observable

Controllers

View

(Observer)

Model

(Observable)

Slide 20

[image: image19.emf]20

Team Development

Group 2

Group 1

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

DeckCard

TestZetAnalyzerTestZetTable

TestZetDeck

TestDeck

Group 4

Group 3

Slide 21

[image: image20.emf]21

Team Development (cont’d)

Card

Deck

TestDeck

ZetCard

ZetDeck

TestZetDeck

Group 1

 (2-6 people)

Project Leader

ZetAnalyzer

TestZetAnalyzer

ZetTable

TestZetTable

Group 2

 (2-4 people)

ZetTableDisplay

ZetGameModel

Group 3

code supplied

(or 2-3 people)

ZetGame

ZetMenu

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

Group 4

 code supplied

Slide 22

[image: image21.emf]22

Developers — Group 1

2-6 people

Classes:

–Card

–Deck

–TestDeck

–ZetCard

–ZetDeck

–TestZetDeck

Required skills:

–Basic constructors and “get” methods

–java.util.ArrayList

–Selection Sort or Collections.sort(...)

–Inheritance, super(...)

ZetDeckZetCard

DeckCard

TestZetDeck

TestDeck

Slide 23

[image: image22.emf]23

Classes:

–ZetTable

–TestZetTable

–ZetAnalyzer

–TestZetAnalyzer

Required skills:

–Array algorithms

–Static methods

–Modulo arithmetic

Developers — Group 2

2-4 people

ZetTable

ZetAnalyzer

TestZetAnalyzerTestZetTable

Slide 24

[image: image23.emf]24

Classes:

–ZetTableDisplay

–ZetGameModel

Required skills:

–Graphics

–MVC concept and

java.util.Observer / Observable

Developers — Group 3

Code is Supplied (or 2-3 people)

ZetTableDisplay

ZetTableModel

Slide 25

[image: image24.emf]25

Classes:

–ZetGame

–ZetMenu

–ZetPlayer

–ComputerZetPlayer

–HumanZetPlayer

Prerequisite skills:

–GUI design

–javax.swing

–Mouse, keyboard, and

timer event handling

Developers — Group 4

Code is Supplied

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayerHumanZetPlayer

Slide 26

[image: image25.emf]26

Group 1

Task 1

(1-3 people)

Card

Deck

TestDeck

Task 2

(1-3 people)

ZetCard

ZetDeck

TestZetDeck

Slide 27

[image: image26.emf]27

public class Card

implements Comparable<Card>

{

public Card (int id) { ... }

public int getId () { ... }

public boolean equals (Object other) { ... }

public int compareTo (Cardother) { ... }

public String toString () { ... }

// Fields:

private int id;

}

Group 1 Task 1-a

Slide 28

[image: image27.emf]28

public class Deck

{

 public Deck () { ... }

 public Deck (int capacity) { ... } // creates an empty deck

 // of given capacity

 public int getNumCards () { ... }

 public boolean isEmpty () { ... }

 public void add (Card card) { ... } // adds card to the top

 public Card takeTop () { ... } // removes card from the top

 public void shuffle ();

 public void sort ();

 public String toString () { ... }

 // Fields:

 ...

}

Group 1 Task 1-b

See implementation tips in

Deck.java

Slide 29

[image: image28.emf]29

public class TestDeck

• Create an empty deck

• Add a few cards

• Print out

• Shuffle

• Print out

• Sort

• Print out

• Remove cards one by one;

 print out after each removed card

Group 1 Task 1-c

Slide 30

[image: image29.emf]30

public class ZetCard

 extends Card

{

 // Combines the four attributes to make a

 // unique ID in the range from 0 to 80.

 public ZetCard (int number, int shape,

 int fill, int color) { ... }

 public int getNumber () { ... }

 public int getShape () { ... }

 public int getFill () { ... }

 public int getColor () { ... }

 public String toString () { ... }

 // Fields:

 ...

 }

Group 1 Task 2-a

Slide 31

[image: image30.emf]31

public class ZetDeck

{

 public ZetDeck () { ... } // creates a full deck of

 // 81 SET cards

}

Group 1 Task 2-b

public class TestZetDeck

• Create a ZetDeck

• Remove and print out three top cards

Group 1 Task 2-c

Slide 32

[image: image31.emf]32

Group 2

Task 1

(1-2 people)

ZetAnalyzer

TestZetAnalyzer

Task 2

(1-2 people)

ZetTable

TestZetTable

Slide 33

[image: image32.emf]33

public class ZetAnalyzer

{

 public static boolean isZet (ZetCard card1,

 ZetCard card2, ZetCard card3) { ... }

 public static int[] findZet (ZetCard[] cards) { ... }

}

Group 2 Task 1-a

See implementation tips in

ZetAnalyzer.java

Slide 34

[image: image33.emf]34

public class TestZetAnalyzer

• Create a ZetDeck

• Open and print out a few cards

• Find and print out all “sets” by calling isZet on all

 triplets of cards

• Find and print out one “set” by calling findZet

Group 2 Task 1-b

Slide 35

[image: image34.emf]35

public class ZetTable

{

 ...

}

Group 2 Task 2-a

See the specs in the javadoc

docs and the implementation

tips in ZetTable.java

Slide 36

[image: image35.emf]36

public class TestZetTable

• See javadoc documentation for ZetTable.java

• Create a ZetTable object

• Simulate a SET game for one player:

- Call table.findZet (); while a “set” is not found,

 call table.open3Cards (); if it returns false,

 the game is over

- Print out the “set”

- Call table.remove3Cards (...) to remove the “set”

- If not enough cards open (! table.enoughOpen()),

 open 3 more cards; if can’t open, the game

 is over

- Repeat the above steps until the deck is empty

Group 2 Task 2-b

Slide 37

[image: image36.emf]37

When everyone has finished...

The project leader collects the code from

the groups.

The project leader adds the supplied

classes:

The QA (Quality Assurance) team

(everyone) tests the application.

–ZetPlayer

–ZetComputerPlayer

–ZetHumanPlayer

–ZetGame

–ZetMenu

–ZetGameModel

–ZetTableDisplay

Slide 38

[image: image37.emf]38

Summary

OOP helped us split the project into small

classes with well-defined limited

responsibilities.

Encapsulation helped us minimize

documentation and interactions between

developers.

Slide 39

[image: image38.emf]39

Summary (cont’d)

Abstraction helped us make some of the

classes (Card, Deck) reusable and to create a

framework (ZetCard, ZetDeck, ZetAnalyzer,

ZetTable) for other SET-type games and

activities.

Inheritance helped us reuse the code from

Deck in ZetDeck and made it easier to add

different types of players.

Slide 40

[image: image39.emf]40

These slides and the Game of SET case

study code are posted at:

 http://www.skylit.com/oop/

See InstructorNotes.doc for suggestions on

how to run this project with your students.

e-mail questions and comments about this

project to:

 mlitvin@andover.edu

The Game of SET:

A Case Study in OO Design
and Team Development

Notes for the Instructor
Objective: This exercise gives students a taste of how object-oriented design and programming might work in the “real world.” The emphasis is on project design and on working as a team, not on writing Java code.

Time requirement: 2-3 hours to include the preliminary discussion of OO design principles, this project’s design, coding, and discussion of the lessons learned.

Team composition: 4-10 people. If necessary, several independent teams can work in parallel.

Prerequisites: The members of the team may have varying levels of technical proficiency. All participants must have some understanding of classes, objects, constructors and methods. At least one participant (Group 1 Task 1-b) should be familiar with java.util.ArrayList or be able to figure out how to use its add and get, and remove methods. The same person must be familiar with Selection Sort and a similar shuffling algorithm, or use the Collections.sort and Collections.shuffle library methods. Group 2 Task 1-a expects basic familiarity with modulo 3 arithmetic, although the programmer can get around it with more verbose code. Group 2 Task 2-a requires a fast coder who can write several methods quickly and is familiar or can figure out a partitioning algorithm for an array (similar to one used in Quicksort).

In order to facilitate the appropriate allocation of tasks among team members, the difficulty of each task is labeled with (, ((, or (((. “Shell” Java files with method headers and development tips are provided for the more difficult tasks. The difficulty of the tasks can be controlled by the instructor who can provide some code from the solution.

The project can accommodate more experienced programmers, familiar with graphics and MVC, by delegating the Group 3 tasks to students instead of using the provided code.

Project administration: At first, all students participate together in the initial discussion of OO design principles and the project design. After that, a team is formed for implementing the code. The instructor appoints one Project Leader and two Group Leaders, and splits the rest of the students between Group 1 and Group 2. The Project Leader and the Group Leaders must be enthusiastic, have strong organizational skills, and be fluent in using an IDE and putting projects together. The Group Leaders can also participate as developers on some tasks. If necessary the instructor can act as the Project Leader.

Team work: The two groups work independently of each other: write code, and test it independently when possible. In this project, Group 2 has to use for testing the classes developed by Group 1. Leaders of Group 1 and Group 2 test the finished code before passing it to the project leader. The members of a group work independently on their tasks. However, the group leaders must monitor their group’s progress and, if necessary, mobilize those who completed their tasks to help other group members. This project is about team work, not competition.

Before the project: Review the main OO design principles, discuss the project design and its decomposition into independent tasks and demonstrate the Set Game application.

Slide handouts: The project leader should get copies of slides 20-36. The Group 1 leader gets copies of slides 26-31 and the Group 2 leader gets copies of slides 32-36. All participants should get a copy of slide 20 or have it displayed for the whole class.

Docs handouts: All students get javadoc-generated documentation for the classes the team will be working on. It is available in the docs folder and accessible through docs\index.html.

Code handouts: The project leader gets the following files:

ZetGame.java
ZetMenu.java
ZetPlayer.java
ComputerZetPlayer.java
HumanZetPlayer.java
ZetTableDisplay.java
ZetGameModel.java
deck.jpg
The Group 1 leader gets the tips and documentation file for Task 1-b, Group1\Deck.java.

The Group 2 leader gets the tips and documentation files for Tasks 1-a and 2-a: Group2\ZetAnalyzer.java and Group2\ZetTable.java, respectively.

During the project: Monitor the progress of each group, provide assistance when necessary. Developers who have finished their task can help others in their group. Insist that each task developer tests his or her code independently and each group tests the code before having it integrated into the final project.

After the project: Test the program thoroughly. Make each group and its members present each task and the code written for it. Review how the key OOP concepts are used in this project.

Feedback: We will appreciate any comments and suggestions for improving this project. Please e-mail mlitvin@andover.edu.

I thank Marsha Jean Falco, president of SET Enterprises, Inc. (and the inventor of the SET game) for the permission to use SET in this project.

I am very grateful to Gary Litvin for his help with the design and implementation of the GUI code.

_1143960723.ppt

Model

View1

View2

View3

Controller1

Controller2

Follow established design patterns, when applicable.

Model-View-Controller (MVC),

(a.k.a Observer) design pattern:

		 Controller(s) trigger changes in the

 model

		 The model notifies all the “views”

 (observers) that it has changed

		 The views are updated

_1143960742.ppt

Group 1

Task 1 (1-3 people)

Card

Deck

TestDeck

Task 2 (1-3 people)

ZetCard

ZetDeck

TestZetDeck

_1143960755.ppt

Group 2

Task 1 (1-2 people)

ZetAnalyzer

TestZetAnalyzer

Task 2 (1-2 people)

ZetTable

TestZetTable

_1143960765.ppt

public class TestZetTable

		 See javadoc documentation for ZetTable.java

		 Create a ZetTable object

		 Simulate a SET game for one player:

		 Call table.findZet (); while a “set” is not found,

 call table.open3Cards (); if it returns false,

 the game is over

		 Print out the “set”

		 Call table.remove3Cards (...) to remove the “set”

		 If not enough cards open (! table.enoughOpen()),

 open 3 more cards; if can’t open, the game

 is over

		 Repeat the above steps until the deck is empty

Group 2 Task 2-b

_1164111973.ppt

A Case Study in OO Design

and Team Development

The Game of SET:

Maria Litvin

Phillips Academy

Andover, Massachusetts

Advanced Placement Program Professional Development 2004-2005, AP Computer Science A and Computer Science AB, Special Topic: Object-Oriented Design. Copyright © 2004 by College Board. Reproduced with permission. All rights reserved. www.collegeboard.com.

_1239986518.ppt

public class Card

 implements Comparable<Card>

{

 public Card (int id) { ... }

 public int getId () { ... }

 public boolean equals (Object other) { ... }

 public int compareTo (Card other) { ... }

 public String toString () { ... }

 // Fields:

 private int id;

}

Group 1 Task 1-a

_1143960769.ppt

Summary

		OOP helped us split the project into small classes with well-defined limited responsibilities.

		Encapsulation helped us minimize documentation and interactions between developers.

_1143960774.ppt

		These slides and the Game of SET case study code are posted at:

 http://www.skylit.com/oop/

		See InstructorNotes.doc for suggestions on how to run this project with your students.

		e-mail questions and comments about this project to:

 mlitvin@andover.edu

_1160122765.ppt

public class Deck

{

 public Deck () { ... }

 public Deck (int capacity) { ... } // creates an empty deck

 // of given capacity

 public int getNumCards () { ... }

 public boolean isEmpty () { ... }

 public void add (Card card) { ... } // adds card to the top

 public Card takeTop () { ... } // removes card from the top

 public void shuffle ();

 public void sort ();

 public String toString () { ... }

 // Fields:

 ...

}

Group 1 Task 1-b

See implementation tips in Deck.java

_1143960772.ppt

Summary (cont’d)

		Abstraction helped us make some of the classes (Card, Deck) reusable and to create a framework (ZetCard, ZetDeck, ZetAnalyzer, ZetTable) for other SET-type games and activities.

		Inheritance helped us reuse the code from Deck in ZetDeck and made it easier to add different types of players.

_1143960767.ppt

When everyone has finished...

		The project leader collects the code from the groups.

		The project leader adds the supplied classes:

		The QA (Quality Assurance) team (everyone) tests the application.

ZetPlayer

ZetComputerPlayer

ZetHumanPlayer

ZetGame

ZetMenu

ZetGameModel

ZetTableDisplay

_1143960760.ppt

public class TestZetAnalyzer

		 Create a ZetDeck

		 Open and print out a few cards

		 Find and print out all “sets” by calling isZet on all

 triplets of cards

		 Find and print out one “set” by calling findZet

Group 2 Task 1-b

_1143960762.ppt

public class ZetTable

{

 ...

}

Group 2 Task 2-a

See the specs in the javadoc docs and the implementation tips in ZetTable.java

_1143960758.ppt

public class ZetAnalyzer

{

 public static boolean isZet (ZetCard card1,

 ZetCard card2, ZetCard card3) { ... }

 public static int[] findZet (ZetCard[] cards) { ... }

}

Group 2 Task 1-a

See implementation tips in ZetAnalyzer.java

_1143960751.ppt

public class ZetCard

 extends Card

{

 // Combines the four attributes to make a

 // unique ID in the range from 0 to 80.

 public ZetCard (int number, int shape,

 int fill, int color) { ... }

 public int getNumber () { ... }

 public int getShape () { ... }

 public int getFill () { ... }

 public int getColor () { ... }

 public String toString () { ... }

 // Fields:

 ...

 }

Group 1 Task 2-a

_1143960753.ppt

public class ZetDeck

{

 public ZetDeck () { ... } // creates a full deck of

 // 81 SET cards

}

Group 1 Task 2-b

public class TestZetDeck

		 Create a ZetDeck

		 Remove and print out three top cards

Group 1 Task 2-c

_1143960748.ppt

public class TestDeck

		 Create an empty deck

		 Add a few cards

		 Print out

		 Shuffle

		 Print out

		 Sort

		 Print out

		 Remove cards one by one;

 print out after each removed card

Group 1 Task 1-c

_1143960732.ppt

Developers — Group 1

2-6 people

		Classes:

Card

Deck

TestDeck

ZetCard

ZetDeck

TestZetDeck

		Required skills:

Basic constructors and “get” methods

java.util.ArrayList

Selection Sort or Collections.sort(...)

Inheritance, super(...)

ZetDeck

ZetCard

Deck

Card

TestZetDeck

TestDeck

_1143960737.ppt

Developers — Group 3

Code is Supplied (or 2-3 people)

		Classes:

ZetTableDisplay

ZetGameModel

		Required skills:

Graphics

MVC concept and java.util.Observer / Observable

ZetTableDisplay

ZetTableModel

_1143960739.ppt

Developers — Group 4

Code is Supplied

		Classes:

ZetGame

ZetMenu

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

		Prerequisite skills:

GUI design

javax.swing

Mouse, keyboard, and timer event handling

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

_1143960735.ppt

Developers — Group 2

2-4 people

		Classes:

ZetTable

TestZetTable

ZetAnalyzer

TestZetAnalyzer

		Required skills:

Array algorithms

Static methods

Modulo arithmetic

ZetTable

ZetAnalyzer

TestZetAnalyzer

TestZetTable

_1143960727.ppt

Team Development

Group 2

Group 1

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

Deck

Card

TestZetAnalyzer

TestZetTable

TestZetDeck

TestDeck

Group 4

Group 3

_1143960730.ppt

Team Development (cont’d)

Card

Deck

TestDeck

ZetCard

ZetDeck

TestZetDeck

Group 1

 (2-6 people)

Project Leader

ZetAnalyzer

TestZetAnalyzer

ZetTable

TestZetTable

Group 2

 (2-4 people)

ZetTableDisplay

ZetGameModel

Group 3

code supplied

(or 2-3 people)

ZetGame

ZetMenu

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

Group 4

 code supplied

_1143960725.ppt

MVC in SET

interface

java.util.

Observer

java.util.

Observable

Controllers

View (Observer)

Model (Observable)

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

Deck

Card

_1143960704.ppt

UML Diagrams

		UML (Unified Modeling Language) diagrams represent graphically relationships between classes.

Class A

Class B

extends

Class A

Interface B

implements

Class A

uses

Class B

Object of Class A

has-a(n)

Object of Class B

Collection A

holds

Objects of Class B

or

1

*

_1143960713.ppt

Arrange classes in layers: classes in the top layers utilize simpler, more general classes from the bottom layers.

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

Deck

Card

_1143960718.ppt

Provide tests for individual classes and sybsystems, where possible.

TestZetAnalyzer

TestZetTable

TestZetDeck

TestDeck

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

Deck

Card

_1143960720.ppt

A framework for other SET-type games and activities

Classes for any card game

Create reusable classes or frameworks (extendable systems of classes) when appropriate. (But do not overgeneralize!)

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

Deck

Card

_1143960716.ppt

Minimize coupling (interdependences between classes, subsystems).

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

Deck

Card

_1143960709.ppt

OO Design Basics

ZetTable

		Holds the deck and the open cards

		Opens and removes specified cards

		Looks for a “set” in the open cards

		Rearranges the open cards, filling gaps when necessary

ZetDeck, ZetAnalyzer

Make each class implement a limited set of responsibilities.

_1143960711.ppt

public class ComputerZetPlayer extends JPanel implements ZetPlayer, ...

{

 public ComputerZetPlayer (ZetGame game,

 ZetGameModel gameModel) { ... }

 public void start () { ... }

 public void stop () { ... }

 public int getScore() { ... }

 public void setScore(int score) { ... }

 ...

 private void declareZet () { ... }

 private int state;

 private int delay;

 private int score = 0;

 ...

}

Encapsulate classes; make classes interact via well-defined public constructors and methods.

_1143960707.ppt

SET Classes

ZetGame

ZetMenu

interface

ZetPlayer

ComputerZetPlayer

HumanZetPlayer

ZetTableDisplay

ZetTableModel

ZetTable

ZetAnalyzer

ZetDeck

ZetCard

Deck

Card

_1143960695.ppt

Computer SET

The deck

The open cards

A “Set”

Computer speed control

“Set!” button

_1143960700.ppt

CRC Cards for SET

ZetCard

		Represents a SET card

		Holds card attributes (color, fill, etc.)

ZetDeck

		Holds 81 SET cards

		Shuffles and sorts the deck

		Delivers cards one at a time

ZetCard, ZetTable

ZetTable

		Holds the deck and the open cards

		Opens and removes cards

		Looks for a “set”

ZetDeck, ZetAnalyzer

Unfortunately, the name of the game, SET, clashes with java.util.Set and with names of setter methods. To avoid confusion, in this case study we use Zet in class and method names.

_1143960702.ppt

CRC Cards for SET (cont’d)

ZetGameModel

		Keeps track of the card table and the picked cards

		Updates the display as necessary

ZetTable, ZetTableDisplay

ZetTableDisplay

		Draws the open cards, picked cards, and the deck

ZetTable, ZetGameModel

ComputerZetPlayer

		Displays computer’s control panel

		Handles timer events

		Keeps computer’s score

ZetGame, ZetGameModel

HumanZetPlayer

		Displays guest’s control panel

		Handles keyboard / mouse

		Keeps guest’s score

ZetGame, ZetGameModel

ZetGame

		Consolidates GUI

		Creates and manages the players and the game model

ZetGame, ZetGameModel

ZetAnalyzer

		Determines whether three cards form a “set”

		Finds a “set” in a given array of cards

ZetTable

_1143960697.ppt

Identifying Classes — CRC Cards

		CRC (Class, Responsibilities, Collaborators) cards facilitate brainstorming for identifying classes in an OO project.

		A CRC card is usually an index card that lists a class, its responsibilities, and helper classes.

		CRC cards are informal; responsibilites are listed with few details (not a list of the class’s methods).

_1143960690.ppt

The SET Game (cont’d)

		A SET deck consists of 81 cards. A card has four attributes:

number of symbols (1, 2, or 3)

symbol shape (oval, squiggle, or diamond)

symbol fill (outlined, striped, or solid)

symbol color (red, green, or blue)

		A “set” is three cards, such that for each attribute its values for the cards are either all the same or all different.

One example of a “set”

_1143960692.ppt

The SET Game (cont’d)

		At the start of the game, 12 cards are open and all the players look for a “set” in them.

		The player who sees a set announces, “Set!” then promptly points to the three cards of the set.

		If the cards indeed form a set, these cards are removed and replaced with three cards from the deck, and the player gets one point; otherwise, the cards remain on the table, and the player loses one point.

		If all the players agree that the open cards don’t have any sets, 3 additional cards are opened.

_1143960688.ppt

The SET Game

		SET is a simple card game which is gaining popularity.

		http://www.setgame.com has the official rules, examples, game variations, and other resources.

		SET® is a registered trademark of SET Enterprises, Inc.

