

Object-Oriented Programming
and

Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin

Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Fourth AP Edition

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2022 by Maria Litvin, Gary Litvin, and
Skylight Publishing

This material is provided to you as a supplement to the book Java
Methods, fourth AP edition You may print out one copy for
personal use and for face-to-face teaching for each copy of the
Java Methods book that you own or receive from your school.
You are not authorized to publish or distribute this document in
any form without our permission. You are not permitted to post
this document on the Internet. Feel free to create Internet links
to this document’s URL from your web pages, provided this
document won’t be displayed in a frame surrounded by
advertisement or material unrelated to teaching AP* Computer
Science or Java. You are not permitted to remove or modify this
copyright notice.

Library of Congress Control Number: 2021944689

ISBN 978-0-9972528-2-8

* AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
product manufacturers or trademark owners.

Oracle, Java, and Java logos are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates in the U.S. and other countries.

Chapter

18 Mouse, Keyboard, Sounds,
and Images

18.1 Prologue 18-2
18.2 Mouse Events Handling 18-2
18.3 Keyboard Events Handling 18-4
18.4 Lab: Ramblecs Concluded 18-7
18.5 Playing Audio Clips 18-8
18.6 Working with Images 18-10
18.7 Lab: Slide Show 18-14
18.8 Summary 18-16
 Exercises

 18-1

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18-2 CHAPTER 18 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

18.1 Prologue

JVM (Java Virtual Machine) has a “virtual” mouse that rolls on an x-y plane and has
up to three buttons. Mouse coordinates are actually the graphics coordinates of the
mouse cursor; they are in pixels, relative to the upper-left corner of the component
that registers mouse events. Mouse events can be captured by any object designated
as a MouseListener (that is, any object of a class that implements the
MouseListener interface).

Keyboard events can be captured by any object designated as a KeyListener.
Handling keyboard events in an object-oriented application is complicated by the fact
that a computer has only one keyboard and different objects need to listen to it at
different times. There is a fairly complicated system of passing the focus (the
primary responsibility for processing keyboard events) from one component to
another and of passing keyboard events from nested components up to their
“parents.” Handling mouse events is easier than handling keyboard events because
the concept of “focus” does not apply.

In this chapter we will discuss the technical details of handling the mouse and the
keyboard in a Java GUI application. We will also learn how to load and play audio
clips and how to display images and icons.

18.2 Mouse Events Handling

The MouseListener interface defines five methods: mousePressed,
mouseReleased, mouseClicked, mouseEntered, and mouseExited. Each of
these methods receives one parameter, a MouseEvent. If e is a MouseEvent,
e.getX() and e.getY() return the x and y coordinates of the event, relative to the
upper-left corner of the component (usually a panel) whose listener captures the
event. The getButton method returns one int value: MouseEvent.NOBUTTON,
MouseEvent.BUTTON1, MouseEvent.BUTTON2, or MouseEvent.BUTTON3,
depending on which, if any, of the mouse buttons has changed state.

You add a mouse listener to a component by calling the component’s
addMouseListener method. It is often convenient to make a panel its own mouse
listener. To do that, the panel’s constructor can call addMouseListener(this).
We’ve done that in JM\Ch16\Puzzle\Puzzle.java. A mouse listener can be also
implemented as a private inner class.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 18.2 ~ MOUSE EVENTS HANDLING 18-3

A class that implements the MouseMotionListener interface has mouseMoved
and mouseDragged methods for processing events that report changes in the mouse
coordinates without a change in the button state. These methods are used together
with MouseListener methods. mouseMoved is called when the mouse is moved
with its button up; mouseDragged is called when the mouse is moved with its button
held down.

As you know, implementing a Java interface requires the programmer to implement
each method in the interface, even those that are never used. In our Puzzle program,
for example, only the mousePressed method of the mouse listener interface is used
— the remaining four are empty. To eliminate these empty methods, Java designers
came up with a MouseAdapter class. MouseAdapter implements all the
MouseListener methods as empty methods. You can extend the adapter class,
overriding only the methods you need in your MouseListener class. This is often
done using an anonymous inline class (Figure 18-1).

public class MyPanel extends JPanel
{
 public MyPanel() // constructor
 {
 ...

 addMouseListener(new MouseAdapter()
 {
 public void mouseClicked(MouseEvent e)
 {
 ... // process click at e.getX(), e.getY()
 }
 });
 ...
 }
}

Figure 18-1. Adding a MouseListener to a panel using MouseAdapter

An anonymous inline class is assumed to extend the class specified in the new
operator. In this case, the anonymous class extends MouseAdapter, overriding its
empty mouseClicked method. Here the whole expression new MouseAdapter()
{...} is passed as a parameter to the addMouseListener method. Unfortunately,
adapter classes undo the discipline of interfaces. If, for instance, you accidentally
type mouselicked instead of mouseClicked, the code will compile but mouse
events won’t be processed.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18-4 CHAPTER 18 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

18.3 Keyboard Events Handling

Any object of a class that implements the KeyListener interface can capture
keyboard events. A KeyListener can be attached to any Component by calling
that component’s addKeyListener method. However, before the component can
process the keystrokes, it must request focus — the responsibility for handling the
keyboard events. At different times different GUI components obtain focus. Some
GUI components, such as buttons or text field objects, receive the focus
automatically when they are clicked. Other components, such as JPanel objects,
must be explicitly activated by passing the focus to them. The focus is passed to a
component by calling the component’s requestFocus method.

In the Ramblecs program from Chapter 17, for example, we attached a
KeyListener to the control panel:

 controlPanel.addKeyListener(new RamblecsKeyboard(...));

The RamblecsKeyboard class implements KeyListener, and controlPanel is
an object of the class ControlPanel, which is a subclass of JPanel. However, our
controlPanel will never “hear” any keystrokes unless we call its requestFocus
method.

In Ramblecs, when you click on the button or move the slider, Swing automatically
shifts keyboard focus to that component, because the button and the slider normally
process keystrokes in their own way (for instance, a JButton is programmed to be
activated by the spacebar, and a JSlider responds to cursor keys). If you want
controlPanel get the focus back, the button listener’s actionPerformed and the
slider listener’s stateChanged has to call controlPanel’s requestFocus.

The KeyListener interface specifies three methods: keyPressed, keyReleased,
and keyTyped. Each of these methods receives one parameter, KeyEvent e. The
KeyEvent class distinguishes “character keys,” such as letters, digits, and so on,
from “action keys,” such as cursor keys, function keys, <Enter>, and so on. Action
keys do not have characters associated with them. These keys are identified by their
“virtual codes.” These virtual codes are defined as public static int constants in
the KeyEvent class. Table 18-1 shows the names of several commonly used action
keys. The VK prefix stands for “virtual key.” For instance, KeyEvent.VK_LEFT
refers to the left-arrow cursor key.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 18.3 ~ KEYBOARD EVENTS HANDLING 18-5

VK_F1 through VK_F24

Function keys

VK_LEFT, VK_RIGHT,
VK_UP, VK_DOWN

Cursor arrow keys

VK_KP_LEFT, VK_KP_RIGHT,
VK_KP_UP, VK_KP_DOWN

Cursor arrow keys on the
numeric keypad

VK_HOME, VK_END,
VK_PAGE_UP, VK_PAGE_DOWN,
etc.

As implied by the names

Table 18-1. KeyEvent’s symbolic constants for virtual keys

The details of what happens on the keyboard, which methods are called in response,
and what value is passed to them in the KeyEvent are rather technical. For instance,
if you press the shift key and then ‘a’, then release ‘a’ and release shift, this will
result in two calls to keyPressed, two calls to keyReleased, and one call to
keyTyped.

To keep things simple, use the keyTyped method to capture characters
and use either the keyPressed or keyReleased method to capture
action keys. When an action key is pressed, keyTyped is not called.

In the keyTyped method, e.getKeyChar() returns the typed character. In the
keyPressed and keyReleased methods, e.getKeyCode() returns the virtual
code.

A KeyEvent object also has the boolean methods isShiftDown, isAltDown, and
isControlDown, which return true if the respective “modifier” key was held down
when the key event occurred.

A more general getModifiers method returns an integer whose individual bits,
when set, represent the pressed modifier keys: Shift, Ctrl, Alt, and so on. These
bits can be tested by using bit masks defined as static constants in KeyEvent.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18-6 CHAPTER 18 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

Let’s take this opportunity to review the use of Java’s bit-wise logical operators. For
example, we would use the bit-wise “and” operator to test whether a particular bit in
an integer is set to 1:

 if ((e.getModifiers() & KeyEvent.ALT_MASK) != 0)
 // if ALT is down
 ...

Here & is bit-wise “and” operator: a bit in the result is set to 1 if both corresponding
bits in the operands are 1. KeyEvent.ALT_MASK is an integer constant with only
one bit set in it. The condition tests whether this bit is also set in the value returned
by getModifiers (Figure 18-2).

getModifiers() 0010…0011001
KeyEvent.ALT_MASK 0000…0001000
 ============
 0000…0001000

&

Figure 18-2. & operator used to test a particular bit in an integer

You can use a combined mask to test whether two modifier keys are held down at
once. For example:

 int mask = KeyEvent.SHIFT_MASK | KeyEvent.CTRL_MASK;

Here | is the bit-wise “or” operator: a bit in the result is set to 1 if at least one of the
corresponding bits in the operands is 1. So the above statement sets both the Shift
and Ctrl bits in mask (Figure 18-3). Then

 if ((e.getModifiers() & mask) == mask)

tests whether the two bits “cut out” by mask from the value returned by
getModifiers are both set to 1 (Figure 18-4).

Be very careful not to misuse bit-wise operators instead of && and ||
operators in boolean expressions. Bit-wise operators are allowed, but
they don’t follow short-circuit evaluation rules.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 18.4 ~ LAB: RAMBLECS CONCLUDED 18-7

KeyEvent.SHIFT_MASK 0000…0000001
KeyEvent.CTRL_MASK 0000…0000010
 =========
 0000…0000011

===

|

Figure 18-3. | operator is used to combine bits in two integers

getModifiers() 0010…0010110
mask 0000…0000011
 ============
getModifiers() & mask 0000…0000010

&

Figure 18-4. & operator is used to “cut out” mask bits from an integer

18.4 Lab: Ramblecs Concluded

In this lab we return to the Ramblecs program from the previous chapter. Your task
here is to write the RamblecsKeyListener class. This class implements the
KeyListener interface and handles keyboard input for Ramblecs.

The constructor for RamblecsKeyListener takes two parameters: a LetterPanel
whiteboard and a ControlPanel controlPanel. The table below lists the
actions that RamblecsKeyListener takes in response to keystrokes.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18-8 CHAPTER 18 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

Key Action

ENTER Calls whiteboard’s enterWord()

Spacebar Calls whiteboard’s dropWord()

Left/right cursor keys or
arrows on the numeric
keypad

Calls whiteboard’s
moveCubeLeft() or
moveCubeRight(), respectively

Up cursor key or arrow on
the numeric keypad

Calls whiteboard’s
rotateCube(-1)

Down cursor key or arrow
on the numeric keypad

Calls whiteboard’s rotateCube(1)

Ctrl-F Calls controlPanel’s speedUp()

Ctrl-S Calls controlPanel’s slowDown()

All other keyboard events should be ignored.

Set up a project with your RamblecsKeyListener, Ramblecs.java from your
solution to the Ramblecs lab in Chapter 17, and our ramblecs.jar and .wav files
from JM\Ch17\Ramblecs. Test your class.

18.5 Playing Audio Clips

In the original release of Java, methods for playing fragments of audio (“audio clips”)
were designed for applets. Applet’s getAudioClip method can be used to load an
audio file into your applet. The file can be a .wav file; some other popular formats
(.au, .mid, etc.) are supported, too. The file is actually loaded only when your
applet attempts to play it for the first time. You need to import Java’s AudioClip
class to use this method:

import java.applet.AudioClip;

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 18.5 ~ PLAYING AUDIO CLIPS 18-9

One overloaded form of getAudioClip takes one parameter: the URL (or
pathname) of a file. The URL must be an absolute URL. Use the forward slash to
separate directories in the string that represents a path — it works on all systems.

A more convenient form of getAudioClip takes two parameters: the path and file
names separately. In this form, you can use as the first parameter the URL returned
by the applet’s method getDocumentBase(), which returns the path of the HTML
file that runs the applet. The second parameter is usually a literal string, the file
name. For example:

 AudioClip bells = getAudioClip(getDocumentBase(), "bells.wav");

Alternatively, you can use as the first parameter getCodeBase(), which returns the
URL or path of the applet’s compiled code.

Once loaded, the clip can be played using its play method. For example:

 bells.play();

An application (not an applet) can use a static method newAudioClip(URL url) of
the Applet class to load an audio clip. To use this method, you first need to create a
URL object from the audio clip file’s name.

We find this implementation counterintuitive and inelegant: Why use Applet’s
methods and URLs when you are working on an application? We also came across
some technical problems with AudioClip’s play method: it causes occasional
delays when a short sound clip is played frequently.

That’s why we created our own class, EasySound, for loading and playing sound
clips. This class is adapted from one of the more advanced examples found in
Oracle’s tutorials [1]. As you have seen in several projects and exercises, our
EasySound is indeed easy to use. For example:

 EasySound chomp = new EasySound("chomp.wav");
 chomp.play();

EasySound.java can be found in JM\EasyClasses; EasySound.class is also
included in JM\EasyClasses\EasyClasses.jar.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

https://docs.oracle.com/javase/tutorial/sound/sampled-overview.html

18-10 CHAPTER 18 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

18.6 Working with Images

Java has two types of objects that represent images: Image and ImageIcon. Either
of these objects can be created by loading a picture from an image file. The two most
common formats for image files are .gif (Graphics Interchange Format,
pronounced “giff”) and .jpg (Joint Photographic Experts Group, pronounced “jay-
peg”) format.

You need to import java.awt.Image to use the Image class.

In an application (not an applet), the easiest way to load an image from a file is the
ImageIO class’s static method read. ImageIO is part of the javax.imageio
package. It can be imported into your class as follows:

import javax.imageio.ImageIO;

The ImageIO’s read method takes a File object as a parameter. It is easy to create
a File object from a given pathname. For example:

 File imageFile = new File("happy.jpg");

read throws an exception if the file does not exist, so you need to use it tentatively
and catch the exception:

 Image picture;

 try
 {
 picture = ImageIO.read(new File("happy.jpg"));
 }
 catch (IOException ex)
 {
 System.out.println("*** Can't load happy.jpg ***");
 System.exit(1);
 }

You display an Image object by calling drawImage from any paint or
paintComponent method. Figure 18-5 offers an example of a complete program
that reads an image from a file and displays it in a window.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 18.6 ~ WORKING WITH IMAGES 18-11

import java.awt.Graphics;
import java.awt.Image;
import javax.swing.JFrame;
import javax.imageio.ImageIO;
import java.io.File;
import java.io.IOException;

public class ImageTest extends JFrame
{
 private Image picture;

 public ImageTest()
 {
 super("Image Test");
 setSize(1000, 800);

 String pathname = "images/happy.jpg";
 try
 {
 picture = ImageIO.read(new File(pathname));
 }
 catch (IOException ex)
 {
 System.out.println("*** Can't load " + pathname + " ***");
 System.exit(1);
 }
 }

 public void paint(Graphics g)
 {
 super.paint(g);

 if (picture != null)
 {
 // center the picture:
 int x = (getWidth() - picture.getWidth(null)) / 2;
 int y = (getHeight() - picture.getHeight(null)) / 2;
 g.drawImage(picture, x, y, null);
 }
 }

 public static void main(String[] args)
 {
 ImageTest window = new ImageTest();
 window.setLocation(20, 20);
 window.setDefaultCloseOperation(EXIT_ON_CLOSE);
 window.setVisible(true);
 }
}

Figure 18-5. JM\Ch18\SlideShow\ImageTest.java

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18-12 CHAPTER 18 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

In the drawImage call, the first parameter is a reference to the image; the second and
third are the x and y coordinates of the upper-left corner of the displayed image,
relative to the component on which the image is drawn; and the fourth is a reference
to an ImageObserver object, usually null or this.

image.getWidth(null) and image.getHeight(null) calls return
the raw dimensions of image.

If the truth be told, ImageIO.read actually creates a BufferedImage object.
BufferedImage is a subclass of Image. A BufferedImage provides easy access
to the image buffer that holds colors of individual pixels. See Java API for details.

In an applet you can use JApplet’s getImage method to load an Image. This
method is analogous to the getAudioClip method discussed in the previous
section. There are two forms of getImage that take the same kinds of parameters as
getAudioClip: the absolute URL (or pathname) of a file, or a path and a file name
as two separate parameters. In the latter form, the first parameter is often
getDocumentBase().

Another way to load and show an image uses the ImageIcon class defined in the
Swing package. This works well in both applets and applications. An ImageIcon
object can be constructed directly from a pathname or a URL. For example:

 ImageIcon coin = new ImageIcon("coin.gif");

In this example, the coin.gif file is located in the same folder as the program’s
code.

An ImageIcon can be also constructed from an Image object. For example:

 private Image coinImage;
 < ... load this image, etc. >
 ImageIcon coin = new ImageIcon(coinImage);

You can display an ImageIcon object by calling its paintIcon method from any
paint or paintComponent method. See Figure 18-6 for an example.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 18.6 ~ WORKING WITH IMAGES 18-13

import java.awt.Graphics;
import javax.swing.JPanel;
import javax.swing.ImageIcon;

public class IconTest extends JPanel
{
 private ImageIcon coin;

 public IconTest()
 {
 coin = new ImageIcon("coin.gif");
 }

 public void paintComponent(Graphics g)
 {
 int x = 5, y = 10;
 if (coin != null)
 coin.paintIcon(this, g, x, y);
 }
}

Figure 18-6. Drawing an ImageIcon

In the coin.paintIcon call, the first parameter is a reference to the component on
which the icon is displayed; the second is a reference to the Graphics context; and
the third and fourth are the x and y coordinates of the upper-left corner of the image,
relative to the upper-left corner of the component on which the icon is painted.

The getIconWidth() and getIconHeight() calls return the
dimensions of the icon; you can also get the icon’s image by calling its
getImage method.

Many Swing components, including JButton, JCheckBox, JRadioButton, and
JLabel, have convenient constructors and a setIcon method that allow you to add
an icon to these components (see Appendix C).

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18-14 CHAPTER 18 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

18.7 Lab: Slide Show

This lab is your chance to write a small program from scratch. But first run
slideshow.jar in the JM\Ch18\SlideShow folder to play with the program. It
displays several images in sequence, or you can choose a particular image from a
pull-down list. The program loads the images from the images subfolder; it assumes
that all the files there are valid image files (such as .jpg, .gif, or .bmp). The
program arranges images in the same order as they are currently arranged in the
folder. The left and right arrow buttons take you to the previous or the next image in
the sequence, respectively. When the beginning or the end of the sequence is reached,
the program “wraps around” and shows the image from the other end. This simple
program does not zoom in or zoom out; the images must be small enough to fit on the
screen.

The program consists of three classes: SlideShow, ControlPanel and
ImagePanel (Figure 18-7).

SlideShow

ImagePanel

ControlPanel

Figure 18-7. Classes in the Slide Show program

1. The SlideShow class

This class extends JFrame; its object represents the program’s window. The
SlideShow’s constructor sets the title bar, sets the window size (by calling
JFrame’s setSize method), creates a control panel and an image panel, and
positions them in the window’s content pane. SlideShow’s main method creates a
window, sets its initial position (by calling JFrame’s setLocation method), and
makes the window visible. SlideShow’s init method, called from main at the
end, when the window is already visible, calls ControlPanel’s init.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 18.7 ~ LAB: SLIDE SHOW 18-15

2. The ControlPanel class

This class extends JPanel. Its constructor takes an ImagePanel and a pathname (a
String) as parameters and saves their values for future use. The second parameter
is the relative pathname of the folder that holds the images. In our setup, the image
files are located in the images subfolder of the folder that holds the runnable
program, so the relative pathname passed to the ControlPanel’s constructor will be
simply "images".

The ControlPanel’s constructor can obtain a list of the file names in a given folder
by calling the list method of the File object that represents the folder:

 File folder = new File(imageFolderPathname);

 fileNames = folder.list();
 if (fileNames == null || fileNames.length == 0)

 {

 System.out.println("*** The folder " +
 imageFolderPathname + " does not exist or is empty ***");

 System.exit(1);

 }

The ControlPanel’s constructor then creates a JComboBox from the list of file
names and two buttons, “reverse” and “forward”, adding the respective left- and
right-arrow icons to them (the icon files are provided for you in the
JM\Ch18\SlideShow folder). Don’t forget to add action listeners to these
components (or the control panel itself can serve as an action listener for all three of
them).

The constructor adds all three components to the panel.

The ControlPanel’s init method sets the current index of the displayed image to
0 and loads the first image:

 public void init()
 {
 currentIndex = 0;
 imagePanel.readImage(imageFolderPathname + "/" +
 fileNames[currentIndex]);
 imagePanel.repaint();
 }

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18-16 CHAPTER 18 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

3. The ImagePanel class

This class’s constructor makes the background color of the panel white.
ImagePanel’s readImage method takes a pathname string as a parameter. It loads
the image from the file with that pathname (see Figure 18-5) and stores a reference to
the image in a field, to be used later by the paintComponent method.
paintComponent displays the image in the center of the panel (see Figure 18-5).

Once you get your program working, add keyboard handling to it. It is convenient to
make the control panel the key listener, or use a private inner class. Define the
following functions for the keys: the left and up cursor keys (regular and on the
keypad) and the PageUp key work the same way as the “reverse” button; the right
and down cursor keys, PageDown, Tab, Space, and Enter work the same way as
the “forward” button; Home takes you back to the first image and End advances to the
last image. Don’t forget to update the state of the pull-down list when a key is
pressed. Make the escape key quit the program.

The difficulty here is handling the keyboard focus. You have to pass the focus to the
control panel (by calling its requestFocus method) after the window has become
visible. This can be done in ControlPanel’s init method. You also need to
return the focus to the control panel after any of its components is clicked.

18.8 Summary

Mouse events on a component can be captured and processed by a MouseListener
object attached to that component. A mouse listener is added to a component
(usually a panel) by calling its addMouseListener method. It is not uncommon for
a panel to be its own mouse listener or use a private inner class. A class that
implements a mouse listener interface must have five methods: mousePressed,
mouseReleased, and mouseClicked, called upon the corresponding button action,
and mouseEntered and mouseExited, called when the mouse cursor enters or
leaves the component. Each of these methods takes one parameter, a MouseEvent.
e.getX() and e.getY() return the x and y coordinates of the event in pixels,
relative to the upper-left corner of the component whose listener captures it.

For more detailed mouse tracking you can use a MouseMotionListener which has
two more methods, mouseMoved and mouseDragged. These methods are called
when the mouse moves with the button up or down, respectively.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 18.8 ~ SUMMARY 18-17

Adapter classes allow a programmer to supply only those listener methods that the
program actually uses, inheriting the other (empty) methods from the adapter class.

Keyboard events can be captured and processed by a KeyListener object: an object
of a class that implements the KeyListener interface and defines the keyPressed,
keyReleased, and keyTyped methods. You add a key listener to a component by
calling its addKeyListener method. A component must obtain “focus” by calling
the requestFocus method to enable processing of keyboard events.

The keyPressed and keyReleased methods are used to process “action” keys
(such as Enter, cursor keys, Home, etc.). The keyTyped method is called for
“typed” keys that represent a character. Each of these three methods takes one
parameter of the KeyEvent type. KeyEvent’s getKeyCode method returns the
virtual code of the key, such as VK_ENTER, VK_LEFT, VK_HOME, and so on.
KeyEvent’s getKeyChar method returns the typed character. KeyEvent’s
boolean methods isShiftDown, isControlDown, isAltDown return true if the
corresponding modifier key, Shift, Ctrl, or Alt, was held down when the event
occurred. The getModifiers method returns an integer that holds a combination of
bits representing the pressed modifier keys. KeyEvent has static constants defined
for different modifier bits: KeyEvent.SHIFT, KeyEvent.CTRL, and so on.

You can load an audio file (a .wav file or a file in one of several other popular
formats) into an applet by calling JApplet’s getAudioClip method. To play it,
call AudioClip’s play method. In applications, use our EasySound class instead.

An Image object can be loaded into an application from a .gif or .jpg file (or a
file in another image format) by calling ImageIO’s static method read. To display
an image, call Graphics’s drawImage method.

The ImageIcon class in Swing provides another way to represent an image in your
program. ImageIcon’s constructor loads an icon from a file, and ImageIcon’s
paintIcon method displays the image. An ImageIcon object can be added to any
JLabel, JButton, JCheckBox, or JRadioButton object.

 Exercises

The exercises for this chapter are in the book (Java Methods: Object-Oriented
Programming and Data Structures, 4th AP Edition, ISBN 978-0-9972528-2-8,
Skylight Publishing, 2022 [1]).

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

http://www.skylit.com/

