

Object-Oriented Programming
and

Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin

Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Fourth AP Edition

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2022 by Maria Litvin, Gary Litvin, and
Skylight Publishing

This material is provided to you as a supplement to the book Java
Methods, fourth AP edition You may print out one copy for
personal use and for face-to-face teaching for each copy of the
Java Methods book that you own or receive from your school.
You are not authorized to publish or distribute this document in
any form without our permission. You are not permitted to post
this document on the Internet. Feel free to create Internet links
to this document’s URL from your web pages, provided this
document won’t be displayed in a frame surrounded by
advertisement or material unrelated to teaching AP* Computer
Science or Java. You are not permitted to remove or modify this
copyright notice.

Library of Congress Control Number: 2021944689

ISBN 978-0-9972528-2-8

* AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
product manufacturers or trademark owners.

Oracle, Java, and Java logos are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates in the U.S. and other countries.

 A-1

 Appendix A: The 17 Bits of Style

The language is perpetually in flux: it is a living stream,
shifting, changing, receiving new strength from a
thousand tributaries, losing old forms in the backwaters of
time. To suggest that a young writer not swim in the
main stream of this turbulence would be foolish indeed,
and such is not the intent of these cautionary remarks.
The intent is to suggest that in choosing between formal
and the informal, the regular and the offbeat, the general
and the special, the orthodox and the heretical, the
beginner err on the side of conservatism, on the side of
established usage.

William Strunk Jr. and E.B. White, The Elements of Style

Style is a crucial component of professionalism in software development. Clean code
that follows stylistic conventions is easier to read, maintain, and share with
colleagues. Programmers who code in good style are less likely to have silly bugs
and will actually spend less time developing and debugging their code. Finally, good
style in programs is a concern because for us, humans, style and aesthetics are a
concern in everything we do.

Following stylistic conventions is easy, and, after a little practice, becomes second
nature. Occasionally, an especially independent-minded student resists all
conventions, arguing, “But it works!” To this person we can point out two things.
First, a programmer’s product is not an executable program but its source code. In
the current environment the life expectancy of a “working” program is just a few
months, sometimes weeks. On the other hand, source code, updated periodically, can
live for years; to be of any use, it must be readable to others. Second, bad or
unconventional style is uncool. It immediately gives away an amateur, a kind of
social misfit in the software developers’ culture. As nerdy as this culture might be, it
has its own sense of aesthetic pride.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

A-2 APPENDIX A ~ THE 17 BITS OF STYLE

In The Elements of Style, William Strunk wrote:

There is no satisfactory explanation of style, no infallible guide to good
writing, no assurance that a person who thinks clearly will be able to write
clearly, no key that unlocks the door, no inflexible rule by which the young
writer may shape his course.

These words, which come in the book’s closing chapter, describe (and illustrate) the
deeper meaning of style — after the straightforward rules of correct usage have been
discussed and illustrated in the previous chapters. In programming, too, style has a
deeper meaning: it is that elusive quality which makes one person’s code elegant and
easy to follow and another person’s convoluted and obscure although in line with all
the superficial stylistic conventions. The mystery is not as wide open in writing code
as in creative writing: there are many firm design principles, and “a person who
thinks clearly” usually is able to code clearly. Still, some mystery remains. Here we
discuss only the superficial stylistic conventions, leaving the deeper meaning alone.

Bit 0. At the top of each source module, put in a comment that states the purpose of

the class, its author, date of completion and other pertinent information, such
as a copyright message, special instructions on how to run the program, data
files that your program reads or creates, and a history of revisions.

Bit 1. Place all import directives at the top of your source module. Start with

standard Java packages followed by your own or your organization’s
packages.

Bit 2. Separate different methods in a class with blank lines and separator comment

lines (or more formal documentation comments for javadoc). Split your
code into “paragraphs” that represent meaningful steps or actions in your
program by inserting blank lines and, if necessary, comment lines.

Bit 3. Place each statement on a separate line. Indent.

Java code is usually indented by two character positions in the body of a
method, and within braces under if, else, switch, and for, while, and
do-while loops.

Bit 4. Keep braces visible.

There are different styles of placing braces (naturally, this is a subject of
heated debates). Many programmers place the opening brace at the end of
the previous line, and the closing brace on a separate line. In our Java book
we place both the opening and the closing braces on separate lines.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 APPENDIX A ~ THE 17 BITS OF STYLE A-3

Bit 5. Use spaces liberally. Do not cram things together.

There are no clear-cut rules on where to add spaces — different people have
different tastes. We use spaces on both sides of the assignment operator and
other binary operators: arithmetic, logical, relational. For example, we find

 for (i=0;i<n;i++)
 sum+=scores[i];

less readable than

 for (i = 0; i < n; i++)
 sum += scores[i];

With longer names, spaces become more important. For example:

 taxAmount=saleAmount*taxRate;

appears too crammed. We prefer

 taxAmount = saleAmount * taxRate;

Unary operators, such as - (negation) , ++, --, !, are usually attached to their
operands. For example:

 if (! match)
 count --;

is too fancy. People normally write:

 if (!match)
 count--;

Most people do not use spaces around brackets, or the “dot” class member
access operators.

 Color c = Color . white;

compiles correctly, but you won’t see it in programs.

Some people like to leave spaces on both sides of a parenthesis in
expressions and in method calls. We normally leave a space only before an
opening parenthesis and after a closing parenthesis.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

A-4 APPENDIX A ~ THE 17 BITS OF STYLE

Bit 6. Omit needless parentheses.

Java uses a well-defined order of precedence among operators. All unary
operators have higher rank than (are applied before) all binary operators.
Among the binary operators, arithmetic operators have higher rank than
relational operators, which in turn apply before logical operators. There is no
need to clutter your code with too many parentheses. For example, instead of

 if ((!match) && (i < (length - 1)))...

you can write

 if (!match && (i < length - 1))...

or even

 if (!match && i < length - 1)...

You have to be a little more careful with && and ||: the && operator has a
higher rank than ||. For example, you need to keep the parentheses in

 if (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))...

Occasionally, parentheses facilitate reading long logical expressions:

 if ((x > -3 && x < - 1) || (x > 1 && x < 3))...

Use parentheses whenever you are unsure about the order of operations.

Bit 7. Comment each method: state its purpose, arguments, assumptions

(“preconditions”), results (“postconditions”), and return value.

Bit 8. Avoid redundant comments.

 if (a[i] >= 0)
 count++; // Increment the count

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 APPENDIX A ~ THE 17 BITS OF STYLE A-5

Bit 9. Self-explanatory code is usually better than heavily commented code.

For example, instead of

 if (s.equals("MA") && a < 16) // If state is Massachusetts and
 // age is less than Massachusetts
 // legal driving age...

it is better to write:

 final int massDrivingAge = 16;
 if (stateCode.equals("MA") && age < massDrivingAge)

Bit 10. Explain your intentions ahead of time in difficult algorithms.

 // Going backwards from a[n–1], shift elements to the
 // right until you find an element a[i] <= aTemp:
 i = n;
 while (i > 0 && aTemp < a[i-1])
 {
 a[i] = a[i-1];
 i--;
 }

Bit 11. Comment obscure code or unusual usage.

 int mask = KeyEvent.SHIFT_MASK | KeyEvent.CTRL_MASK;

 // If both control and shift are pressed:
 if ((e.getModifiers() & mask) == mask)
 ...

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

A-6 APPENDIX A ~ THE 17 BITS OF STYLE

Bit 12. Use meaningful names.

 totalAmt = saleAmt * (1 + taxRate);

is better than

 tot = a * (1 + r);

But overly long COBOL-style names will clutter your code:

 totalAmountDue = totalSaleAmount * (1 + salesTaxRate);

In Java, method names should usually sound like verbs. Make names of
classes, objects, and variables sound like nouns.

Method names do not have to be too long. The same name may be used for
methods that take different numbers or types of arguments (a feature known
as overloading). Methods in different classes may have the same name, too.
In fact, the object-oriented programming approach encourages the use of the
same name for methods that perform semantically similar tasks. The object’s
name often combines with the method’s name and the argument’s name to
create a readable phrase:

 display.setText(message);

Bit 13. It is acceptable to use simple names for loop-control variables and other

temporary “throw-away” variables. Declare these variables locally in each
method and use the same name where appropriate. Note that longer names,
such as index, subscript, counter, lcv, or loopControlVariable
are no more meaningful than i or k. Likewise, xCoordinate is no more
expressive than x.

If possible, use the same name for similar purposes. For example, the same
names for local variables row and col may be used in different methods to
indicate row and column in a 2-D array.

Use names that make sense in context. For example:

for (student = 0; student < numStudents; student++)
 sum += gpa[student];

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 APPENDIX A ~ THE 17 BITS OF STYLE A-7

Bit 14. Use the upper and lower case consistently.

Java is case-sensitive, and all reserved words are lowercase. Other than that,
there are no syntax rules for using the upper or lower case. However, you
should follow the Java style:

• Start all class names with a capital letter.
• Start all names of variables and methods with a lowercase letter and

capitalize subsequent words.
• Use all caps occasionally for prominent constants.

Bit 15. Code defensively.

 while (n-- > 0)
 {
 ...
 }

may save one line of code, but it may also lead to a bug if n is used inside the
loop.

 while (n > 0)
 {
 ...
 n--;
 }

is safer.

Bit 16. Non Sibi (“Not for Self”) is the motto of Phillips Academy in Andover.

Keep these words in mind when writing code.

C
op

yr
ig

ht

 2
02

2
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

