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2010 AB 
AP Calculus Free-Response 

Solutions and Notes 
 
 
Question AB-1 1 
 

(a) ( )
6

0
f t dt∫ 142.275≈ . 

 
(b) ( ) ( )8 8f g− 348.417 108 59.583 ft /hr≈ − = − . 
 

(c) ( ) ( )
( )

0, for 0 6
125 6 , for 6 7

125 108 7 , for 7 9

t
h t t t

t t

⎧ ≤ <
⎪

= − ≤ <⎨
⎪ + − ≤ ≤⎩

 

 

(d) ( ) ( )
9

0
9f t dt h−∫ ( )367.335 125 2 108 26.335≈ − + ⋅ = . 

 
 Notes: 

 
1. Students should expect that Part A of the free-response section of the exam (the 

calculator part) will continue to involve questions with a real-world context. 
 
 
 



4 FREE-RESPONSE SOLUTIONS ~ 2010 AB 

Question AB-2 
 
(a) The rate at which entries were being deposited (in hundreds of entries per hour) is, 

approximately, ( ) ( )7 5 21 13 8 4
7 5 2 2

E E− −
= = =

−
.  

 

(b) The approximation is 1 0 4 4 13 13 21 21 232 3 2 1
8 2 2 2 2

+ + + +⎛ ⎞⋅ + ⋅ + ⋅ + ⋅⎜ ⎟
⎝ ⎠

. 1  This 

represents the average number of hundreds of entries in the box over the 8 hours. 
 

(c) ( )
12

8
(8)E P t dt− ∫ 23 16.000 7≈ − =  hundred entries. 

 
(d) The question asks for the maximum value of P(t).  ( ) 0P t′ =  at t = 9.1835 and 

t = 10.816.   The maximum value of P(t) must occur at one of these, or at the 
endpoints, t = 8 or  t = 12. 2  P(9.1835) = 5.089, P(10.816) = 2.911, P(8) = 0, and 
P(12) = 8.  The maximum is at t = 12. 

 
 Notes: 

 

1. No need to evaluate.  For the curious, the value is ( )1 85.5 10.6875
8

= . 

2. The candidate test is the simplest way to find the maximum. 
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Question AB-3 
 
(a) The number of people who arrived at the ride between t = 0 and t = 3 is 

( )
3

0

1000 1200 1200 8002 1 3200
2 2

r t dt + +
= ⋅ + ⋅ =∫ .  

 
(b) For 2 3t≤ <  people arrive at the rate greater than 800 people/hour and are removed 

from the line at the constant rate of 800 people/hour.  The rate of arrival is greater 
than the rate of removal, so the number of people in the line is increasing. 

 
(c) Let ( )P t  be the number of people in the line at time t.  Then ( ) ( ) 800P t r t′ = − .  

( ) 0P t′ >  for 0 3t< < , and ( ) 0P t′ <  for 3 8t< < .  Therefore, ( )P t  reaches its 
maximum at t = 3.  The line is longest at t = 3; at that time there are 

( )
3

0
700 3 800r t dt+ − ⋅ =∫  700 3200 2400 1500+ − =  people in the line. 

 

(d) ( )( )
0

700 800 0
t

r u du+ − =∫ . 

 
 
Question AB-4 1 
 

(a) Area = 
9

9 3/ 2

0
0

4 46 2 6 54 27 18
3 3

xdx x x⎛ ⎞− = − = − ⋅ =⎜ ⎟
⎝ ⎠∫ . 

 

(b) Volume = ( )( )29

0
7 2 1x dxπ − −∫ . 

 

(c) Volume = ( )
46 6

0 0

33
16
yx x dy dy

⎛ ⎞
⋅ = ⎜ ⎟

⎝ ⎠
∫ ∫ . 2 

 
 Notes: 

 
1. This is the second consecutive year that an area-volume problem has appeared in 

Part B, the closed calculator part, of the free response.  Concern over calculator 
programs that can unfairly assist students in the solution of area-volume problems is 
one possible reason for this. 

2. Not ( )29

0
3 6 2 x dx−∫ .  The sections are perpendicular to the y-axis, not the x-axis. 

 
 



6 FREE-RESPONSE SOLUTIONS ~ 2010 AB 

Question AB-5 
 

(a) ( ) ( )
0

5
x

g x g t dt′= + ∫ , so ( ) ( )
3

0

33 5 5
2

g g t dt π′= + = + +∫  1 and 

( ) ( )
2

0
2 5 5g g t dt π

−
′− = + = −∫ . 2 

 
(b) 0x =  2x = , and 3x = , because ( )g x′  changes from increasing to decreasing or 

vice-versa at these points. 
 
(c) At a critical point, ( ) ( ) 0 ( )h x g x x g x x′ ′ ′= − = ⇒ = .  The line y = x intersects 

the semicircle where x > 0 and 2 2 22 4x y x+ = = ⇒  2x = .  At that point, ( )h x′  
changes sign from positive to negative, so h(x) has a relative maximum there. 

 
The line y = x also intersects the graph of  ( )y g x′=  at x = 3.    ( )h x′  does not 
change sign at x = 3, so there is neither a minimum nor a maximum there. 

 
 Notes: 

 
1. Use geometry to calculate the areas, not the Fundamental Theorem! 
 
2. The integral from 0 to 2−  is negative. 
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Question AB-6 
 

(a) At the point ( )1, 2 , 8dy
dx

= .  An equation of the tangent line is ( )2 8 1y x− = − . 

 

(b) The approximation is 2 8 0.1 2.8y = + ⋅ = .  Since 
2

2 0d y
dx

>  on the open interval 

(1, 1.1), the graph of f is concave up there, and the tangent line lies below the graph 
of ( )y f x=  for 1 1.1x≤ ≤ .  Thus the approximation is less than ( )1.1f . 

 

(c) 3

1 dy x dx
y

= ⇒∫ ∫  2
2

1 1
2 2

x C
y

− = + .  Substituting ( )1, 2  we get 1 1
8 2

C− = + ⇒  

5
8

C = − .  Solving for y , 2
2

1 5
4

x
y

= − + ⇒  
1/2

25
4

y x
−

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 or 
1/2

25
4

y x
−

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

.  

Since (1) 2 0y = > , the particular solution we are looking for is 
1/2

2

2

5 1
4 5

4

y x
x

−
⎛ ⎞= − =⎜ ⎟
⎝ ⎠ −

. 
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2010 BC 
AP Calculus Free-Response 

Solutions and Notes 
 
Question BC-1 
 
See AB Question 1. 
 
 
Question BC-2 
 
See AB Question 2. 
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Question BC-3 
 

(a) 
3

2 4 2
t

dx dxt
dt dt =

= − ⇒ = .  ( )3

3
3

1 2t

t
t

dy te
dt

−

=
=

= − = . The speed at t = 3 is 

2 22 2 8+ = . 
 

(b) Total distance traveled = ( ) ( )4 22 3

0
2 4 1tt te dt−− + −∫ 11.588≈ . 

 

(c) The tangent to the path is horizontal when 0dy
dt

= .  Solving gives 2.208t ≈ .  At 

that time, 0dx
dt

> , so the particle is moving to the right. 

 
(d)  

(i) ( ) 25 4 8 5x t t t= ⇒ − + = ⇒  t = 1 or t = 3. 
 

(ii) The slope is dy dy dx
dt dtdx

= = .  At t = 1, 
2

2

1/ 1 1 1
2 2 2

dy e
dx e

−
= = −

−
.  

At t = 3, 2 1
2

dy
dx

= = . 

 

(iii) ( ) ( ) ( ) ( )3 33 3

2 2

13 2 1 3 1t ty y te dt te dt
e

− −= + − = + + −∫ ∫  4.000≈ . 1, 2 

 
 Notes: 

 
1. Alternatively, we could calculate y(1). 
2. The integral can be evaluated precisely using integration by parts: 

( )
33 3 3 33 3 3 3 3

22 2 2 2

11 1 1 ( 1) 1 1t t t t tte dt te dt te e dt t e
e

− − − − −⎡ ⎤ ⎡ ⎤− = − = − − = − − = −⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫ ∫ . 
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Question BC-4 
 
See AB Question 4. 
 
 
 
Question BC-5 
 

(a) The step in Euler’s method is 1
2

− .  At ( )1, 0 , the slope 1 1dy y
dx

= − = , so 

1 10 1
2 2newy ⎛ ⎞= + ⋅ − = −⎜ ⎟

⎝ ⎠
.  At 1 1,

2 2
⎛ ⎞−⎜ ⎟
⎝ ⎠

, the slope is 1 31
2 2

⎛ ⎞− − =⎜ ⎟
⎝ ⎠

, so 

1 3 1 1 3 5
2 2 2 2 4 4newy ⎛ ⎞= − + ⋅ − = − − = −⎜ ⎟

⎝ ⎠
. 

 
(b) Since f is continuous, ( ) ( )

1
lim 1 0
x

f x f
→

= = , so we can use l’Hôpital’s Rule: 

( ) ( )
3 21 1

1lim lim
1 3 3x x

f x f x
x x→ →

′
= =

−
. 

 

(c) 1
1

dy dx
y

= ⇒
−∫ ∫  ln 1 y x C− − = + .  Using the initial condition, we get 

1C = − ⇒  1ln 1 1 1 xy x y e −− − = − ⇒ − = .  We are told that ( ) 1y f x= <  for 

this solution, so 1 1y y− = − ⇒  1 11 1x xy e y e− −− = ⇒ = − . 
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Question BC-6 
 

(a) ( ) ( )
2 4 2

cos 1 ... 1 ...
2! 4! 2 !

n
nx x xx

n
= − + − + − + . 

( ) ( )
2 4 2 2

2

cos 1 1( ) ... 1 ...
2! 4! 6! 2 !

n
nx x x xf x

x n

−−
= = − + − − + − +  

 

(b) ( )0 0f ′ = .  (0) 1 (0) 0
2! 4!

f f
′′

′′= ⇒ > .  Therefore, by the Second Derivative Test, 

f has a relative minimum at x = 0. 
 
(c) Integrating the first three terms of the series for f, we get 

3 5

5
1( )
2! 3 4! 5 6!

x xP x x C= − + − +
⋅ ⋅

.  Since g(0) = 1, 1C = ⇒  

3 5

5
1( ) 1
2! 3 4! 5 6!

x xP x x= − + −
⋅ ⋅

. 

 

(d) ( ) 1 1 11 1 ...
2 3 4! 5 6!

g = − + − +
⋅ ⋅

 and 3
1 1(1) 1
2 3 4!

P = − +
⋅

.  The alternating series 

estimate error  3(1) (1)g P−  does not exceed the absolute value of the first omitted 

term in the series, which is 1
5 6!⋅

.  Therefore,  3
1 1(1) (1)

5 6! 6!
g P− < <

⋅
. 
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2010 AB (Form B) 
AP Calculus Free-Response 

Solutions and Notes 
 
 
Question AB-1 (Form B) 
 

(a) Area = ( )( )2

0
6 4ln 3 x dx− −∫ 6.817≈ . 

 

(b) Volume = ( )( )( )2 2 2

0
8 4ln 3 2x dxπ − − −∫ 168.180≈ . 

 

(c) ( )( )2 2

0
6 4ln 3 x dx− −∫ 26.267≈ . 

 
 
Question AB-2 (Form B) 
 
(a) The graph of g has a horizontal tangent where ( ) 0g x′ = : x = 0.163 and x = 0.359. 
 
(b) The graph of g is concave down where ( ) 0g x′′ < .  This happens on one 

subinterval, 0.129 < x < 0.223. 1 
 

(c) ( ) ( ) ( )
0.3

1
0.3 1g g g x dx′= + ∫ 1.546≈ .  The slope at x = 0.3 is 

( )0.3g′ 0.472≈ − .  An equation of the tangent line is 

( )1.546 0.472 0.3y x− = − − . 
 
(d) Since ( ) 0g x′′ >  for 0.25 < x < 1, the graph of g is concave up there, so the tangent 

line at x = 0.3 lies under the graph of g. 
 

 Notes: 
 
1. Since ( ) 0g x′′ <  on (0.129, 0.223), we could say the graph of g is concave down on 

the closed interval [0.129, 0.223]. 
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Question AB-3 (Form B) 
 
(a) The midpoint Riemann sum is ( )4 46 57 62 660⋅ + + =  cubic feet. 
 

(b) The amount of water leaked = ( )
12

0
R t dt∫ 225.594≈  cubic feet. 

 
(c) Volume = 1000 660 225.594 1434.406 1434+ − = ≈  cubic feet. 
 
(d) Let ( )V t  be the volume of water in the pool at time t.  Then 

( ) ( ) ( )8 8 8V P R′ = − 60 16.758 43.242≈ − =  cubic feet per hour. 1   

2 144V r h hπ π= = , so ( ) ( )144
144
V tdh dhV t

dt dt
π

π
′

′ = ⇒ = .  Therefore, 

8

43.242 0.096
144t

dh
dt π=

≈ ≈  1 feet per hour. 2 

 
 Notes: 

 
1.  Or leave the answer as a fraction with π . 
 
2.  Don’t forget the units. 
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Question AB-4 (Form B) 
 
(a) The squirrel changes direction at t = 9 and at t = 15, because its velocity changes 

sign at each of these points in time. 
 

(b) The area of the trapezoid extending from t = 0 to t = 9 is 9 5 20 140
2
+

⋅ = , so the 

squirrel moves 140 units towards B during that time.  The area of the trapezoid from 

t = 9 to t = 15 is 6 4 10 50
2
+

⋅ = , so the squirrel moves back 50 units towards A 

during that time.  The area of the trapezoid from t = 15 to t = 18 is 3 2 10 25
2
+

⋅ = , 

so the squirrel moves 25 units towards B during that time.  Therefore, the distances 
from A are 140 at t = 9, 90 at t = 15, and 115 at t = 18.  The maximum is 140 at 
t = 9. 

 
(c) Based on the calculations in Part (b), the total distance traveled by the squirrel is 

140 + 50 + 25 = 215. 
 

(d) ( ) 10 20 10
10 7

a t − −
= = −

−
; ( ) ( )10 9 10 90v t t t= − − = − + ; 1 

( ) 2( ) 5 90x t v t dt t t C= = − + +∫ .  From Part (b), (9) 140x = ⇒  2 

25 9 90 9 140 265C C− ⋅ + ⋅ + = ⇒ = − ⇒  ( ) 25 90 265x t t t= − + − . 
 

 Notes: 
 
1. The graph of velocity on the interval 7 10t< <  is a straight line.  Its slope is equal to 

the acceleration.  The equation of the line is written in the point-slope form for the 
point (9, 0).  We could use the point (7, 20) instead: ( ) ( )20 10 7v t t= − − . 

 
2. Be careful not to confuse v(9) = 0 on the graph, which applies to the equation for the 

velocity,  with x(9) = 140, which we use to find the equation for the distance. 
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Question AB-5 (Form B) 
 
(a) 

  1 
 

(b) 1dy
dx

= −  when 1 1x
y
+

= − , that is, 1y x= − −  and 0y ≠ . 

 

(c) ( )1ydy x dx= +∫ ∫ , so 
2 2

2 2
y x x C= + + .  (0) 2y = − ⇒  2C = ⇒   

2 2 2 4y x x= + + ⇒  2 2 4y x x= + + .  Since the initial condition has y < 0, we 

choose 2 2 4y x x= − + + . 
 

 Notes: 
 
1. We are asked to sketch the solution on 1 1x− < < .  Without this restriction, the 

domain of this solution would be ( 1, )− ∞ .  A particular solution to a differential 
equation is always defined on a connected interval.  This differential equation is not 
defined when y = 0, so no solution can cross or touch the x-axis.   
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Question AB-6 (Form B) 
 
(a) Particle R moves to the right when ( ) 23 12 9 0r t t t′ = − + > ⇒  ( )( )3 1 0t t− − > ⇒  

0 1 t≤ <  and 3 6t< ≤ . 
 

(b) Particle P moves to the right when ( ) sin 0
2 4

p t tπ π⎛ ⎞′ = − > ⇒⎜ ⎟
⎝ ⎠

 sin 0
4

tπ⎛ ⎞ < ⇒⎜ ⎟
⎝ ⎠

 

2
4

tππ π< < ⇒  4 6t< ≤ . 

 
 R 

1 2 3 4 5 0 6 

P 
t 

 1 
 
 The particles travel in opposite directions for 0 1t< <  and 3 4t< < . 
 

(c) The acceleration is ( )
2 2 23 2 23 cos

8 4 8 2 16
p π π π π⎛ ⎞⎛ ⎞′′ = − = − ⋅ − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

.  The velocity 

at t = 3 is ( ) 3 23 sin 0
2 4 4

p π π π⎛ ⎞′ = − = − <⎜ ⎟
⎝ ⎠

.  Since the velocity and acceleration 

have opposite signs, the particle is slowing down. 
 
(d) The distance between the particles is ( ) ( )p t r t−  and the average distance on the 

interval 1 3t≤ ≤  is ( ) ( )
3

1

1
3 1

p t r t dt−
− ∫ . 

 
 Notes: 

 
1. A chart is not required but might be helpful. 
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2010 BC (Form B) 
AP Calculus Free-Response 

Solutions and Notes 
 
Question BC-1 (Form B) 
 
See AB Question 1. 
 
 
Question BC-2 (Form B) 
 

(a) The tangent line is vertical when 0dx
dt

=  and 0dy
dt

≠ . 1  This occurs at 1.145t ≈  

and 1.253t ≈ . 
 
(b) Let the position of the particle be ( ) ( )( ),x t y t .  Then 

( ) ( ) ( ) ( )1 2

0
1 0 14cos sin tx x t e dt= + ∫ 2 11.315 9.315≈ − + =  and 

( ) ( ) ( )1 2

0
1 0 1 2siny y t dt= + +∫ 3 1.621 4.621≈ + = .  At t = 1, 

1 1t t

dy dy dx
dt dtdx = =

⎡ ⎤= ⎢ ⎥⎣ ⎦
2.6829
3.1072

≈  0.863≈ .  An equation for the tangent line is 

( )4.621 0.863 9.315y x− = − . 
 

(c) The speed is 
2 2

2 2

1

3.1072 2.6829
t

dx dy
dt dt

=

⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

4.105≈ . 

 
(d) The acceleration vector is the derivative of the velocity vector.  At t = 1, this is  

( )28.425, 2.161− . 
 

 Notes: 
 

1. Enter the given functions dx
dt

 and dy
dt

 into your calculator and save them for the rest 

of the solution. 
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Question BC-3 (Form B) 
 
See AB Question 3. 
 
 
Question BC-4 (Form B) 
 
See AB Question 4. 
 
 
Question BC-5 (Form B) 
 

(a) ( ) ( )
( ) ( )

2 2

2 22 2

4 1 4 4 8 4 16

1 4 1 4

x x x xg x
x x

+ − ⋅ −′ = =
+ +

.  For 0x > , ( ) 0g x′ =  when 1
2

x = .  For 

10
2

x< < , ( ) 0g x′ >  and g is increasing; for 1
2

x > , ( ) 0g x′ <  and g is decreasing.  

The absolute maximum value of g therefore occurs at 1
2

x = .  It is 

1 2 112 1 4
4

g ⎛ ⎞ = =⎜ ⎟
⎝ ⎠ + ⋅

.  g has no minimum on ( )0,∞ . 

 
(b) The area is given by the improper integral 

21

1 4
1 4

x dx
x x

∞ ⎛ ⎞− =⎜ ⎟+⎝ ⎠∫

( ) ( )2 2

1

1 1 1lim ln ln 1 4 lim ln ln 1 4 ln 5
2 2 2

b

b b
x x b b

→∞ →∞

⎛ ⎞⎛ ⎞ ⎛ ⎞− + = − + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

2

1 1 1 1 1lim ln ln 5 lim ln ln 5 ln ln 5
2 2 2 211 4 4

b b

b
b

b

→∞ →∞
+ = + = +

+ +
. 1 

 
 Notes: 

 
1. Leave it at this to save time and avoid mistakes. 
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Question BC-6 (Form B) 
 

(a) By the ratio test, the series converges when 

( )

( )

12

lim 1
2

1

n

nn

x
n
x

n

+

→∞
<

−

.  Evaluating the limit 

gives 2 1x < or 1 1
2 2

x− < < .  At 1
2

x = − , the series is ( ) ( )
2 2

1 1 1
1 1

n n

n nn n

∞ ∞

= =

− −
=

− −∑ ∑ .  

This is the harmonic series, which diverges.  At 1
2

x = , the series is ( )
2

1
1

n

n n

∞

=

−
−∑ .  This 

is an alternating series with terms decreasing by absolute value and approaching 
zero.  Therefore, it converges by the Alternating Series Test.  The interval of 

convergence is 1 1
2 2

x− < ≤ . 

 

(b) ( ) ( ) ( ) 1

2

1 2 2
1

n n

n

n x
y f x

n

−∞

=

−
′ ′= =

−∑ , so ( ) ( )
2

1 2
1

n n

n

n x
xy

n

∞

=

− ⋅
′ =

−∑  and 

( ) ( ) ( ) ( )
2

1 2 1 2
1 1

n n n n

n

n x x
xy y

n n

∞

=

⎛ ⎞− ⋅ −
′ − = −⎜ ⎟

⎜ ⎟− −⎝ ⎠
∑ .  Factoring gives 

( ) ( ) ( ) ( )
2 2

1 2 1
2

1

n n
n

n n

x n
xy y x

n

∞ ∞

= =

⎛ ⎞− −
′ − = = −⎜ ⎟

⎜ ⎟−⎝ ⎠
∑ ∑ .  This is a geometric series with the 

first term 24x  and the common ratio 2x− , so it converges to 
24

1 2
x

x+
 when 2 1x < , 

that is, for 1 1
2 2

x− < < . 

 
 
 


